This manual is last updated 29 July 2014 for version 3.3.8 of GnuTLS.
Copyright © 2001-2013 Free Software Foundation, Inc.\\ Copyright © 2001-2013 Nikos Mavrogiannopoulos
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”.
This document demonstrates and explains the GnuTLS library API. A brief introduction to the protocols and the technology involved is also included so that an application programmer can better understand the GnuTLS purpose and actual offerings. Even if GnuTLS is a typical library software, it operates over several security and cryptographic protocols which require the programmer to make careful and correct usage of them. Otherwise it is likely to only obtain a false sense of security. The term of security is very broad even if restricted to computer software, and cannot be confined to a single cryptographic library. For that reason, do not consider any program secure just because it uses GnuTLS; there are several ways to compromise a program or a communication line and GnuTLS only helps with some of them.
Although this document tries to be self contained, basic network programming and public key infrastructure (PKI) knowledge is assumed in most of it. A good introduction to networking can be found in [STEVENS], to public key infrastructure in [GUTPKI] and to security engineering in [ANDERSON].
Updated versions of the GnuTLS software and this document will be available from http://www.gnutls.org/.
In brief GnuTLS can be described as a library which offers an API to access secure communication protocols. These protocols provide privacy over insecure lines, and were designed to prevent eavesdropping, tampering, or message forgery.
Technically GnuTLS is a portable ANSI C based library which implements the protocols ranging from SSL 3.0 to TLS 1.2 (see Introduction to TLS, for a detailed description of the protocols), accompanied with the required framework for authentication and public key infrastructure. Important features of the GnuTLS library include:
The GnuTLS library consists of three independent parts, namely the “TLS protocol part”, the “Certificate part”, and the “Cryptographic back-end” part. The “TLS protocol part” is the actual protocol implementation, and is entirely implemented within the GnuTLS library. The “Certificate part” consists of the certificate parsing, and verification functions and it uses functionality from the libtasn1 library. The “Cryptographic back-end” is provided by the nettle and gmplib libraries.
GnuTLS is available for download at: http://www.gnutls.org/download.html
GnuTLS uses a development cycle where even minor version numbers indicate a stable release and a odd minor version number indicate a development release. For example, GnuTLS 1.6.3 denote a stable release since 6 is even, and GnuTLS 1.7.11 denote a development release since 7 is odd.
GnuTLS depends on nettle
and gmplib
, and you will need to install it
before installing GnuTLS. The nettle
library is available from
http://www.lysator.liu.se/~nisse/nettle/, while gmplib
is available
from http://www.gmplib.org/.
Don't forget to verify the cryptographic signature after downloading
source code packages.
The package is then extracted, configured and built like many other
packages that use Autoconf. For detailed information on configuring
and building it, refer to the INSTALL file that is part of the
distribution archive. Typically you invoke ./configure
and
then make check install
. There are a number of compile-time
parameters, as discussed below.
Several parts of GnuTLS require ASN.1 functionality, which is provided by a library called libtasn1. A copy of libtasn1 is included in GnuTLS. If you want to install it separately (e.g., to make it possibly to use libtasn1 in other programs), you can get it from http://www.gnu.org/software/libtasn1/.
The compression library, libz
, the PKCS #11 helper library p11-kit
, as well
as the TPM library trousers
, are
optional dependencies. You may get libz from http://www.zlib.net/,
p11-kit from http://p11-glue.freedesktop.org/ and trousers from
http://trousers.sourceforge.net/.
A few configure
options may be relevant, summarized below.
They disable or enable particular features,
to create a smaller library with only the required features.
Note however, that although a smaller library is generated, the
included programs are not guaranteed to compile if some of these
options are given.
--disable-srp-authentication --disable-psk-authentication --disable-anon-authentication --disable-openpgp-authentication --disable-dhe --disable-ecdhe --disable-openssl-compatibility --disable-dtls-srtp-support --disable-alpn-support --disable-heartbeat-support --disable-libdane --without-p11-kit --without-tpm --without-zlib
For the complete list, refer to the output from configure --help
.
In this document we present an overview of the supported security protocols in Introduction to TLS, and continue by providing more information on the certificate authentication in Certificate authentication, and shared-key as well anonymous authentication in Shared-key and anonymous authentication. We elaborate on certificate authentication by demonstrating advanced usage of the API in More on certificate authentication. The core of the TLS library is presented in How to use GnuTLS in applications and example applications are listed in GnuTLS application examples. In Other included programs the usage of few included programs that may assist debugging is presented. The last chapter is Internal architecture of GnuTLS that provides a short introduction to GnuTLS' internal architecture.
TLS stands for “Transport Layer Security” and is the successor of SSL, the Secure Sockets Layer protocol [SSL3] designed by Netscape. TLS is an Internet protocol, defined by IETF1, described in [RFC5246]. The protocol provides confidentiality, and authentication layers over any reliable transport layer. The description, above, refers to TLS 1.0 but applies to all other TLS versions as the differences between the protocols are not major.
The DTLS protocol, or “Datagram TLS” [RFC4347] is a protocol with identical goals as TLS, but can operate under unreliable transport layers such as UDP. The discussions below apply to this protocol as well, except when noted otherwise.
TLS is a layered protocol, and consists of the record protocol, the handshake protocol and the alert protocol. The record protocol is to serve all other protocols and is above the transport layer. The record protocol offers symmetric encryption, data authenticity, and optionally compression. The alert protocol offers some signaling to the other protocols. It can help informing the peer for the cause of failures and other error conditions. See The Alert Protocol, for more information. The alert protocol is above the record protocol.
The handshake protocol is responsible for the security parameters' negotiation, the initial key exchange and authentication. See The Handshake Protocol, for more information about the handshake protocol. The protocol layering in TLS is shown in fig-tls-layers.
TLS is not limited to any transport layer and can be used above any transport layer, as long as it is a reliable one. DTLS can be used over reliable and unreliable transport layers. GnuTLS supports TCP and UDP layers transparently using the Berkeley sockets API. However, any transport layer can be used by providing callbacks for GnuTLS to access the transport layer (for details see Setting up the transport layer).
The record protocol is the secure communications provider. Its purpose is to encrypt, authenticate and —optionally— compress packets. The record layer functions can be called at any time after the handshake process is finished, when there is need to receive or send data. In DTLS however, due to re-transmission timers used in the handshake out-of-order handshake data might be received for some time (maximum 60 seconds) after the handshake process is finished.
The functions to access the record protocol are limited to send and receive functions, which might, given the importance of this protocol in TLS, seem awkward. This is because the record protocol's parameters are all set by the handshake protocol. The record protocol initially starts with NULL parameters, which means no encryption, and no MAC is used. Encryption and authentication begin just after the handshake protocol has finished.
Confidentiality in the record layer is achieved by using symmetric
block encryption algorithms like 3DES
, AES
or stream algorithms like ARCFOUR_128
.
Ciphers are encryption algorithms that use a single, secret,
key to encrypt and decrypt data. Block algorithms in CBC mode also provide
protection against statistical analysis of the data. Thus, if you're
using the TLS protocol, a random number of blocks will be
appended to data, to prevent eavesdroppers from guessing the actual
data size.
The supported in GnuTLS ciphers and MAC algorithms are shown in tab:ciphers and tab:macs.
Algorithm | Description
|
---|---|
3DES_CBC |
This is the DES block cipher algorithm used with triple
encryption (EDE). Has 64 bits block size and is used in CBC mode.
|
ARCFOUR_128 |
ARCFOUR_128 is a compatible algorithm with RSA's RC4 algorithm, which is considered to be a trade
secret. It is a fast cipher but considered weak today.
|
AES_CBC |
AES or RIJNDAEL is the block cipher algorithm that replaces the old
DES algorithm. Has 128 bits block size and is used in CBC mode.
|
AES_GCM |
This is the AES algorithm in the authenticated encryption GCM mode.
This mode combines message authentication and encryption and can
be extremely fast on CPUs that support hardware acceleration.
|
CAMELLIA_CBC |
This is an 128-bit block cipher developed by Mitsubishi and NTT. It
is one of the approved ciphers of the European NESSIE and Japanese
CRYPTREC projects.
|
Table 3.1: Supported ciphers.
Algorithm | Description
|
---|---|
MAC_MD5 |
This is an HMAC based on MD5 a cryptographic hash algorithm designed
by Ron Rivest. Outputs 128 bits of data.
|
MAC_SHA1 |
An HMAC based on the SHA1 cryptographic hash algorithm
designed by NSA. Outputs 160 bits of data.
|
MAC_SHA256 |
An HMAC based on SHA256. Outputs 256 bits of data.
|
MAC_AEAD |
This indicates that an authenticated encryption algorithm, such as
GCM, is in use.
|
Table 3.2: Supported MAC algorithms.
The TLS record layer also supports compression. The algorithms implemented in GnuTLS can be found in the table below. The included algorithms perform really good when text, or other compressible data are to be transferred, but offer nothing on already compressed data, such as compressed images, zipped archives etc. These compression algorithms, may be useful in high bandwidth TLS tunnels, and in cases where network usage has to be minimized. It should be noted however that compression increases latency.
The record layer compression in GnuTLS is implemented based on [RFC3749]. The supported algorithms are shown below.
GNUTLS_COMP_UNKNOWN
GNUTLS_COMP_NULL
GNUTLS_COMP_DEFLATE
GNUTLS_COMP_ZLIB
GNUTLS_COMP_DEFLATE
.
Figure 3.2: Supported compression algorithms
Note that compression enables attacks such as traffic analysis, or even plaintext recovery under certain circumstances. To avoid some of these attacks GnuTLS allows each record to be compressed independently (i.e., stateless compression), by using the "%STATELESS_COMPRESSION" priority string, in order to be used in cases where the attacker controlled data are pt in separate records.
Some weaknesses that may affect the security of the record layer have been found in TLS 1.0 protocol. These weaknesses can be exploited by active attackers, and exploit the facts that
Those weaknesses were solved in TLS 1.1 [RFC4346] which is implemented in GnuTLS. For this reason we suggest to always negotiate the highest supported TLS version with the peer2. For a detailed discussion of the issues see the archives of the TLS Working Group mailing list and [CBCATT].
The TLS protocol allows for extra padding of records in CBC ciphers, to prevent statistical analysis based on the length of exchanged messages (see [RFC5246] section 6.2.3.2). GnuTLS appears to be one of few implementations that take advantage of this feature: the user can provide some plaintext data with a range of lengths she wishes to hide, and GnuTLS adds extra padding to make sure the attacker cannot tell the real plaintext length is in a range smaller than the user-provided one. Use gnutls_record_send_range to send length-hidden messages and gnutls_record_can_use_length_hiding to check whether the current session supports length hiding. Using the standard gnutls_record_send will only add minimal padding.
The TLS implementation in the Symbian operating system, frequently
used by Nokia and Sony-Ericsson mobile phones, cannot handle
non-minimal record padding. What happens when one of these clients
handshake with a GnuTLS server is that the client will fail to compute
the correct MAC for the record. The client sends a TLS alert
(bad_record_mac
) and disconnects. Typically this will result
in error messages such as 'A TLS fatal alert has been received', 'Bad
record MAC', or both, on the GnuTLS server side.
If compatibility with such devices is a concern, not sending length-hidden messages solves the problem by using minimal padding.
If you implement an application that has a configuration file, we recommend that you make it possible for users or administrators to specify a GnuTLS protocol priority string, which is used by your application via gnutls_priority_set. To allow the best flexibility, make it possible to have a different priority string for different incoming IP addresses.
The alert protocol is there to allow signals to be sent between peers.
These signals are mostly used to inform the peer about the cause of a
protocol failure. Some of these signals are used internally by the
protocol and the application protocol does not have to cope with them
(e.g. GNUTLS_A_CLOSE_NOTIFY
), and others refer to the
application protocol solely (e.g. GNUTLS_A_USER_CANCELLED
). An
alert signal includes a level indication which may be either fatal or
warning. Fatal alerts always terminate the current connection, and
prevent future re-negotiations using the current session ID. All alert
messages are summarized in the table below.
The alert messages are protected by the record protocol, thus the information that is included does not leak. You must take extreme care for the alert information not to leak to a possible attacker, via public log files etc.
The handshake protocol is responsible for the ciphersuite negotiation, the initial key exchange, and the authentication of the two peers. This is fully controlled by the application layer, thus your program has to set up the required parameters. The main handshake function is gnutls_handshake. In the next paragraphs we elaborate on the handshake protocol, i.e., the ciphersuite negotiation.
The handshake protocol of TLS negotiates cipher suites of
a special form illustrated by the TLS_DHE_RSA_WITH_3DES_CBC_SHA
cipher suite name. A typical cipher
suite contains these parameters:
DHE_RSA
in the example.
3DES_CBC
in this example.
MAC_SHA
is used in the above example.
The cipher suite negotiated in the handshake protocol will affect the record protocol, by enabling encryption and data authentication. Note that you should not over rely on TLS to negotiate the strongest available cipher suite. Do not enable ciphers and algorithms that you consider weak.
All the supported ciphersuites are listed in ciphersuites.
The key exchange algorithms of the TLS protocol offer authentication, which is a prerequisite for a secure connection. The available authentication methods in GnuTLS follow.
In the case of ciphersuites that use certificate authentication, the authentication of the client is optional in TLS. A server may request a certificate from the client using the gnutls_certificate_server_set_request function. We elaborate in Certificate credentials.
The TLS handshake process performs expensive calculations and a busy server might easily be put under load. To reduce the load, session resumption may be used. This is a feature of the TLS protocol which allows a client to connect to a server after a successful handshake, without the expensive calculations. This is achieved by re-using the previously established keys, meaning the server needs to store the state of established connections (unless session tickets are used – Session tickets).
Session resumption is an integral part of GnuTLS, and Session resumption, ex-resume-client illustrate typical uses of it.
A number of extensions to the TLS protocol have been proposed mainly in [TLSEXT]. The extensions supported in GnuTLS are discussed in the subsections that follow.
This extension allows a TLS implementation to negotiate a smaller value for record packet maximum length. This extension may be useful to clients with constrained capabilities. The functions shown below can be used to control this extension.
gnutls_record_get_max_size (gnutls_session_t
session)
gnutls_record_set_max_size (gnutls_session_t
session, size_t
size)
A common problem in HTTPS servers is the fact that the TLS protocol is not aware of the hostname that a client connects to, when the handshake procedure begins. For that reason the TLS server has no way to know which certificate to send.
This extension solves that problem within the TLS protocol, and allows a client to send the HTTP hostname before the handshake begins within the first handshake packet. The functions gnutls_server_name_set and gnutls_server_name_get can be used to enable this extension, or to retrieve the name sent by a client.
gnutls_server_name_set (gnutls_session_t
session, gnutls_server_name_type_t
type, const void *
name, size_t
name_length)
gnutls_server_name_get (gnutls_session_t
session, void *
data, size_t *
data_length, unsigned int *
type, unsigned int
indx)
To resume a TLS session, the server normally stores session parameters. This complicates deployment, and can be avoided by delegating the storage to the client. Because session parameters are sensitive they are encrypted and authenticated with a key only known to the server and then sent to the client. The Session Tickets extension is described in RFC 5077 [TLSTKT].
Since version 3.1.3 GnuTLS clients transparently support session tickets.
This is a TLS extension that allows to ping and receive confirmation from the peer,
and is described in [RFC6520]. The extension is disabled by default and
gnutls_heartbeat_enable can be used to enable it. A policy
may be negotiated to only allow sending heartbeat messages or sending and receiving.
The current session policy can be checked with gnutls_heartbeat_allowed.
The requests coming from the peer result to GNUTLS_E_HERTBEAT_PING_RECEIVED
being returned from the receive function. Ping requests to peer can be send via
gnutls_heartbeat_ping.
gnutls_heartbeat_allowed (gnutls_session_t
session, unsigned int
type)
gnutls_heartbeat_enable (gnutls_session_t
session, unsigned int
type)
gnutls_heartbeat_ping (gnutls_session_t
session, size_t
data_size, unsigned int
max_tries, unsigned int
flags)
gnutls_heartbeat_pong (gnutls_session_t
session, unsigned int
flags)
gnutls_heartbeat_set_timeouts (gnutls_session_t
session, unsigned int
retrans_timeout, unsigned int
total_timeout)
gnutls_heartbeat_get_timeout (gnutls_session_t
session)
TLS gives the option to two communicating parties to renegotiate and update their security parameters. One useful example of this feature was for a client to initially connect using anonymous negotiation to a server, and the renegotiate using some authenticated ciphersuite. This occurred to avoid having the client sending its credentials in the clear.
However this renegotiation, as initially designed would not ensure that the party one is renegotiating is the same as the one in the initial negotiation. For example one server could forward all renegotiation traffic to an other server who will see this traffic as an initial negotiation attempt.
This might be seen as a valid design decision, but it seems it was not widely known or understood, thus today some application protocols use the TLS renegotiation feature in a manner that enables a malicious server to insert content of his choice in the beginning of a TLS session.
The most prominent vulnerability was with HTTPS. There servers request a renegotiation to enforce an anonymous user to use a certificate in order to access certain parts of a web site. The attack works by having the attacker simulate a client and connect to a server, with server-only authentication, and send some data intended to cause harm. The server will then require renegotiation from him in order to perform the request. When the proper client attempts to contact the server, the attacker hijacks that connection and forwards traffic to the initial server that requested renegotiation. The attacker will not be able to read the data exchanged between the client and the server. However, the server will (incorrectly) assume that the initial request sent by the attacker was sent by the now authenticated client. The result is a prefix plain-text injection attack.
The above is just one example. Other vulnerabilities exists that do not rely on the TLS renegotiation to change the client's authenticated status (either TLS or application layer).
While fixing these application protocols and implementations would be one natural reaction, an extension to TLS has been designed that cryptographically binds together any renegotiated handshakes with the initial negotiation. When the extension is used, the attack is detected and the session can be terminated. The extension is specified in [RFC5746].
GnuTLS supports the safe renegotiation extension. The default behavior is as follows. Clients will attempt to negotiate the safe renegotiation extension when talking to servers. Servers will accept the extension when presented by clients. Clients and servers will permit an initial handshake to complete even when the other side does not support the safe renegotiation extension. Clients and servers will refuse renegotiation attempts when the extension has not been negotiated.
Note that permitting clients to connect to servers when the safe renegotiation extension is not enabled, is open up for attacks. Changing this default behavior would prevent interoperability against the majority of deployed servers out there. We will reconsider this default behavior in the future when more servers have been upgraded. Note that it is easy to configure clients to always require the safe renegotiation extension from servers.
To modify the default behavior, we have introduced some new priority
strings (see Priority Strings).
The %UNSAFE_RENEGOTIATION
priority string permits
(re-)handshakes even when the safe renegotiation extension was not
negotiated. The default behavior is %PARTIAL_RENEGOTIATION
that will
prevent renegotiation with clients and servers not supporting the
extension. This is secure for servers but leaves clients vulnerable
to some attacks, but this is a trade-off between security and compatibility
with old servers. The %SAFE_RENEGOTIATION
priority string makes
clients and servers require the extension for every handshake. The latter
is the most secure option for clients, at the cost of not being able
to connect to legacy servers. Servers will also deny clients that
do not support the extension from connecting.
It is possible to disable use of the extension completely, in both
clients and servers, by using the %DISABLE_SAFE_RENEGOTIATION
priority string however we strongly recommend you to only do this for
debugging and test purposes.
The default values if the flags above are not specified are:
Server:
Client:
For applications we have introduced a new API related to safe renegotiation. The gnutls_safe_renegotiation_status function is used to check if the extension has been negotiated on a session, and can be used both by clients and servers.
The Online Certificate Status Protocol (OCSP) is a protocol that allows the
client to verify the server certificate for revocation without messing with
certificate revocation lists. Its drawback is that it requires the client
to connect to the server's CA OCSP server and request the status of the
certificate. This extension however, enables a TLS server to include
its CA OCSP server response in the handshake. That is an HTTPS server
may periodically run ocsptool
(see ocsptool Invocation) to obtain
its certificate revocation status and serve it to the clients. That
way a client avoids an additional connection to the OCSP server.
gnutls_certificate_set_ocsp_status_request_function (gnutls_certificate_credentials_t
sc, gnutls_status_request_ocsp_func
ocsp_func, void *
ptr)
gnutls_certificate_set_ocsp_status_request_file (gnutls_certificate_credentials_t
sc, const char *
response_file, unsigned int
flags)
gnutls_ocsp_status_request_enable_client (gnutls_session_t
session, gnutls_datum_t *
responder_id, size_t
responder_id_size, gnutls_datum_t *
extensions)
gnutls_ocsp_status_request_is_checked (gnutls_session_t
session, unsigned int
flags)
A server is required to provide the OCSP server's response using the gnutls_certificate_set_ocsp_status_request_file. The response may be obtained periodically using the following command.
ocsptool --ask --load-cert server_cert.pem --load-issuer the_issuer.pem --load-signer the_issuer.pem --outfile ocsp.response
Since version 3.1.3 GnuTLS clients transparently support the certificate status request.
The TLS protocol was extended in [RFC5764] to provide keying material to the Secure RTP (SRTP) protocol. The SRTP protocol provides an encapsulation of encrypted data that is optimized for voice data. With the SRTP TLS extension two peers can negotiate keys using TLS or DTLS and obtain keying material for use with SRTP. The available SRTP profiles are listed below.
GNUTLS_SRTP_AES128_CM_HMAC_SHA1_80
GNUTLS_SRTP_AES128_CM_HMAC_SHA1_32
GNUTLS_SRTP_NULL_HMAC_SHA1_80
GNUTLS_SRTP_NULL_HMAC_SHA1_32
Figure 3.3: Supported SRTP profiles
To enable use the following functions.
gnutls_srtp_set_profile (gnutls_session_t
session, gnutls_srtp_profile_t
profile)
gnutls_srtp_set_profile_direct (gnutls_session_t
session, const char *
profiles, const char **
err_pos)
To obtain the negotiated keys use the function below.
session: is a
gnutls_session_t
structure.key_material: Space to hold the generated key material
key_material_size: The maximum size of the key material
client_key: The master client write key, pointing inside the key material
client_salt: The master client write salt, pointing inside the key material
server_key: The master server write key, pointing inside the key material
server_salt: The master server write salt, pointing inside the key material
This is a helper function to generate the keying material for SRTP. It requires the space of the key material to be pre-allocated (should be at least 2x the maximum key size and salt size). The
client_key
,client_salt
,server_key
andserver_salt
are convenience datums that point inside the key material. They may beNULL
.Returns: On success the size of the key material is returned, otherwise,
GNUTLS_E_SHORT_MEMORY_BUFFER
if the buffer given is not sufficient, or a negative error code.Since 3.1.4
Other helper functions are listed below.
gnutls_srtp_get_selected_profile (gnutls_session_t
session, gnutls_srtp_profile_t *
profile)
gnutls_srtp_get_profile_name (gnutls_srtp_profile_t
profile)
gnutls_srtp_get_profile_id (const char *
name, gnutls_srtp_profile_t *
profile)
The TLS protocol was extended in draft-ietf-tls-applayerprotoneg-00
to provide the application layer a method of
negotiating the application protocol version. This allows for negotiation
of the application protocol during the TLS handshake, thus reducing
round-trips. The application protocol is described by an opaque
string. To enable, use the following functions.
gnutls_alpn_set_protocols (gnutls_session_t
session, const gnutls_datum_t *
protocols, unsigned
protocols_size, unsigned int
flags)
gnutls_alpn_get_selected_protocol (gnutls_session_t
session, gnutls_datum_t *
protocol)
Note that these functions are intended to be used with protocols that are registered in the Application Layer Protocol Negotiation IANA registry. While you can use them for other protocols (at the risk of collisions), it is preferable to register them.
This chapter is intended to provide some hints on how to use the TLS over simple custom made application protocols. The discussion below mainly refers to the TCP/IP transport layer but may be extended to other ones too.
Traditionally SSL was used in application protocols by assigning a new port number for the secure services. That way two separate ports were assigned, one for the non secure sessions, and one for the secured ones. This has the benefit that if a user requests a secure session then the client will try to connect to the secure port and fail otherwise. The only possible attack with this method is a denial of service one. The most famous example of this method is the famous “HTTP over TLS” or HTTPS protocol [RFC2818].
Despite its wide use, this method is not as good as it seems. This approach starts the TLS Handshake procedure just after the client connects on the —so called— secure port. That way the TLS protocol does not know anything about the client, and popular methods like the host advertising in HTTP do not work4. There is no way for the client to say “I connected to YYY server” before the Handshake starts, so the server cannot possibly know which certificate to use.
Other than that it requires two separate ports to run a single service, which is unnecessary complication. Due to the fact that there is a limitation on the available privileged ports, this approach was soon obsoleted.
Other application protocols5 use a different approach to enable the secure layer. They use something often called as the “TLS upgrade” method. This method is quite tricky but it is more flexible. The idea is to extend the application protocol to have a “STARTTLS” request, whose purpose it to start the TLS protocols just after the client requests it. This approach does not require any extra port to be reserved. There is even an extension to HTTP protocol to support that method [RFC2817].
The tricky part, in this method, is that the “STARTTLS” request is sent in the clear, thus is vulnerable to modifications. A typical attack is to modify the messages in a way that the client is fooled and thinks that the server does not have the “STARTTLS” capability. See a typical conversation of a hypothetical protocol:
(client connects to the server)CLIENT: HELLO I'M MR. XXX
SERVER: NICE TO MEET YOU XXX
CLIENT: PLEASE START TLS
SERVER: OK
*** TLS STARTS
CLIENT: HERE ARE SOME CONFIDENTIAL DATA
And see an example of a conversation where someone is acting in between:
(client connects to the server)CLIENT: HELLO I'M MR. XXX
SERVER: NICE TO MEET YOU XXX
CLIENT: PLEASE START TLS
(here someone inserts this message)
SERVER: SORRY I DON'T HAVE THIS CAPABILITY
CLIENT: HERE ARE SOME CONFIDENTIAL DATA
As you can see above the client was fooled, and was dummy enough to send the confidential data in the clear.
How to avoid the above attack? As you may have already noticed this one is easy to avoid. The client has to ask the user before it connects whether the user requests TLS or not. If the user answered that he certainly wants the secure layer the last conversation should be:
(client connects to the server)CLIENT: HELLO I'M MR. XXX
SERVER: NICE TO MEET YOU XXX
CLIENT: PLEASE START TLS
(here someone inserts this message)
SERVER: SORRY I DON'T HAVE THIS CAPABILITY
CLIENT: BYE
(the client notifies the user that the secure connection was not possible)
This method, if implemented properly, is far better than the traditional method, and the security properties remain the same, since only denial of service is possible. The benefit is that the server may request additional data before the TLS Handshake protocol starts, in order to send the correct certificate, use the correct password file, or anything else!
One of the initial decisions in the GnuTLS development was to implement the known security protocols for the transport layer. Initially TLS 1.0 was implemented since it was the latest at that time, and was considered to be the most advanced in security properties. Later the SSL 3.0 protocol was implemented since it is still the only protocol supported by several servers and there are no serious security vulnerabilities known.
One question that may arise is why we didn't implement SSL 2.0 in the library. There are several reasons, most important being that it has serious security flaws, unacceptable for a modern security library. Other than that, this protocol is barely used by anyone these days since it has been deprecated since 1996. The security problems in SSL 2.0 include:
Other protocols such as Microsoft's PCT 1 and PCT 2 were not implemented because they were also abandoned and deprecated by SSL 3.0 and later TLS 1.0.
The initial key exchange of the TLS protocol performs authentication of the peers. In typical scenarios the server is authenticated to the client, and optionally the client to the server.
While many associate TLS with X.509 certificates and public key authentication, the protocol supports various authentication methods, including pre-shared keys, and passwords. In this chapter a description of the existing authentication methods is provided, as well as some guidance on which use-cases each method can be used at.
The most known authentication method of TLS are certificates. The PKIX [PKIX] public key infrastructure is daily used by anyone using a browser today. GnuTLS supports both X.509 certificates [PKIX] and OpenPGP certificates using a common API.
The key exchange algorithms supported by certificate authentication are shown in tab:key-exchange.
Key exchange | Description
|
---|---|
RSA |
The RSA algorithm is used to encrypt a key and send it to the peer.
The certificate must allow the key to be used for encryption.
|
DHE_RSA |
The RSA algorithm is used to sign ephemeral Diffie-Hellman parameters
which are sent to the peer. The key in the certificate must allow the
key to be used for signing. Note that key exchange algorithms which
use ephemeral Diffie-Hellman parameters, offer perfect forward
secrecy. That means that even if the private key used for signing is
compromised, it cannot be used to reveal past session data.
|
ECDHE_RSA |
The RSA algorithm is used to sign ephemeral elliptic curve Diffie-Hellman
parameters which are sent to the peer. The key in the certificate must allow
the key to be used for signing. It also offers perfect forward
secrecy. That means that even if the private key used for signing is
compromised, it cannot be used to reveal past session data.
|
DHE_DSS |
The DSA algorithm is used to sign ephemeral Diffie-Hellman parameters
which are sent to the peer. The certificate must contain DSA
parameters to use this key exchange algorithm. DSA is the algorithm
of the Digital Signature Standard (DSS).
|
ECDHE_ECDSA |
The Elliptic curve DSA algorithm is used to sign ephemeral elliptic
curve Diffie-Hellman parameters which are sent to the peer. The
certificate must contain ECDSA parameters (i.e., EC and marked for signing)
to use this key exchange algorithm.
|
Table 4.1: Supported key exchange algorithms.
The X.509 protocols rely on a hierarchical trust model. In this trust model Certification Authorities (CAs) are used to certify entities. Usually more than one certification authorities exist, and certification authorities may certify other authorities to issue certificates as well, following a hierarchical model.
One needs to trust one or more CAs for his secure communications. In that case only the certificates issued by the trusted authorities are acceptable. The framework is illustrated on Figure 4.1.
An X.509 certificate usually contains information about the certificate holder, the signer, a unique serial number, expiration dates and some other fields [PKIX] as shown in tab:x509.
Field | Description
|
---|---|
version |
The field that indicates the version of the certificate.
|
serialNumber |
This field holds a unique serial number per certificate.
|
signature |
The issuing authority's signature.
|
issuer |
Holds the issuer's distinguished name.
|
validity |
The activation and expiration dates.
|
subject |
The subject's distinguished name of the certificate.
|
extensions |
The extensions are fields only present in version 3 certificates.
|
Table 4.2: X.509 certificate fields.
The certificate's subject or issuer name is not just a single string. It is a Distinguished name and in the ASN.1 notation is a sequence of several object identifiers with their corresponding values. Some of available OIDs to be used in an X.509 distinguished name are defined in gnutls/x509.h.
The Version field in a certificate has values either 1 or 3 for version 3 certificates. Version 1 certificates do not support the extensions field so it is not possible to distinguish a CA from a person, thus their usage should be avoided.
The validity dates are there to indicate the date that the specific certificate was activated and the date the certificate's key would be considered invalid.
In GnuTLS the X.509 certificate structures are
handled using the gnutls_x509_crt_t
type and the corresponding
private keys with the gnutls_x509_privkey_t
type. All the
available functions for X.509 certificate handling have
their prototypes in gnutls/x509.h. An example program to
demonstrate the X.509 parsing capabilities can be found in
ex-x509-info.
The certificate structure should be initialized using gnutls_x509_crt_init, and a certificate structure can be imported using gnutls_x509_crt_import.
gnutls_x509_crt_init (gnutls_x509_crt_t *
cert)
gnutls_x509_crt_import (gnutls_x509_crt_t
cert, const gnutls_datum_t *
data, gnutls_x509_crt_fmt_t
format)
gnutls_x509_crt_deinit (gnutls_x509_crt_t
cert)
In several functions an array of certificates is required. To assist in initialization and import the following two functions are provided.
gnutls_x509_crt_list_import (gnutls_x509_crt_t *
certs, unsigned int *
cert_max, const gnutls_datum_t *
data, gnutls_x509_crt_fmt_t
format, unsigned int
flags)
gnutls_x509_crt_list_import2 (gnutls_x509_crt_t **
certs, unsigned int *
size, const gnutls_datum_t *
data, gnutls_x509_crt_fmt_t
format, unsigned int
flags)
In all cases after use a certificate must be deinitialized using gnutls_x509_crt_deinit.
Note that although the functions above apply to gnutls_x509_crt_t
structure, similar functions
exist for the CRL structure gnutls_x509_crl_t
.
The “subject” of an X.509 certificate is not described by a single name, but rather with a distinguished name. This in X.509 terminology is a list of strings each associated an object identifier. To make things simple GnuTLS provides gnutls_x509_crt_get_dn2 which follows the rules in [RFC4514] and returns a single string. Access to each string by individual object identifiers can be accessed using gnutls_x509_crt_get_dn_by_oid.
cert: should contain a
gnutls_x509_crt_t
structuredn: a pointer to a structure to hold the name
This function will allocate buffer and copy the name of the Certificate. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The output string will be ASCII or UTF-8 encoded, depending on the certificate data.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value. and a negative error code on error.Since: 3.1.10
gnutls_x509_crt_get_dn (gnutls_x509_crt_t
cert, char *
buf, size_t *
buf_size)
gnutls_x509_crt_get_dn_by_oid (gnutls_x509_crt_t
cert, const char *
oid, int
indx, unsigned int
raw_flag, void *
buf, size_t *
buf_size)
gnutls_x509_crt_get_dn_oid (gnutls_x509_crt_t
cert, int
indx, void *
oid, size_t *
oid_size)
Similar functions exist to access the distinguished name of the issuer of the certificate.
gnutls_x509_crt_get_issuer_dn (gnutls_x509_crt_t
cert, char *
buf, size_t *
buf_size)
gnutls_x509_crt_get_issuer_dn2 (gnutls_x509_crt_t
cert, gnutls_datum_t *
dn)
gnutls_x509_crt_get_issuer_dn_by_oid (gnutls_x509_crt_t
cert, const char *
oid, int
indx, unsigned int
raw_flag, void *
buf, size_t *
buf_size)
gnutls_x509_crt_get_issuer_dn_oid (gnutls_x509_crt_t
cert, int
indx, void *
oid, size_t *
oid_size)
gnutls_x509_crt_get_issuer (gnutls_x509_crt_t
cert, gnutls_x509_dn_t *
dn)
The more powerful gnutls_x509_crt_get_subject and gnutls_x509_dn_get_rdn_ava provide efficient but low-level access to the contents of the distinguished name structure.
gnutls_x509_crt_get_subject (gnutls_x509_crt_t
cert, gnutls_x509_dn_t *
dn)
gnutls_x509_crt_get_issuer (gnutls_x509_crt_t
cert, gnutls_x509_dn_t *
dn)
dn: a pointer to DN
irdn: index of RDN
iava: index of AVA.
ava: Pointer to structure which will hold output information.
Get pointers to data within the DN. The format of the
ava
structure is shown below.struct gnutls_x509_ava_st { gnutls_datum_t oid; gnutls_datum_t value; unsigned long value_tag; };
The X.509 distinguished name is a sequence of sequences of strings and this is what the
irdn
andiava
indexes model.Note that
ava
will contain pointers into thedn
structure which in turns points to the original certificate. Thus you should not modify any data or deallocate any of those.This is a low-level function that requires the caller to do the value conversions when necessary (e.g. from UCS-2).
Returns: Returns 0 on success, or an error code.
X.509 version 3 certificates include a list of extensions that can be used to obtain additional information on the subject or the issuer of the certificate. Those may be e-mail addresses, flags that indicate whether the belongs to a CA etc. All the supported X.509 version 3 extensions are shown in tab:x509-ext.
The certificate extensions access is split into two parts. The first requires to retrieve the extension, and the second is the parsing part.
To enumerate and retrieve the DER-encoded extension data available in a certificate the following two functions are available.
gnutls_x509_crt_get_extension_info (gnutls_x509_crt_t
cert, int
indx, void *
oid, size_t *
oid_size, unsigned int *
critical)
gnutls_x509_crt_get_extension_data2 (gnutls_x509_crt_t
cert, unsigned
indx, gnutls_datum_t *
data)
gnutls_x509_crt_get_extension_by_oid2 (gnutls_x509_crt_t
cert, const char *
oid, int
indx, gnutls_datum_t *
output, unsigned int *
critical)
After a supported DER-encoded extension is retrieved it can be parsed using the APIs in x509-ext.h
.
Complex extensions may require initializing an intermediate structure that holds the
parsed extension data. Examples of simple parsing functions are shown below.
gnutls_x509_ext_import_basic_constraints (const gnutls_datum_t *
ext, unsigned int *
ca, int *
pathlen)
gnutls_x509_ext_export_basic_constraints (unsigned int
ca, int
pathlen, gnutls_datum_t *
ext)
gnutls_x509_ext_import_key_usage (const gnutls_datum_t *
ext, unsigned int *
key_usage)
gnutls_x509_ext_export_key_usage (unsigned int
usage, gnutls_datum_t *
ext)
More complex extensions, such as Name Constraints, require an intermediate structure, in that
case gnutls_x509_name_constraints_t
to be initialized in order to store the parsed
extension data.
gnutls_x509_ext_import_name_constraints (const gnutls_datum_t *
ext, gnutls_x509_name_constraints_t
nc, unsigned int
flags)
gnutls_x509_ext_export_name_constraints (gnutls_x509_name_constraints_t
nc, gnutls_datum_t *
ext)
After the name constraints are extracted in the structure, the following functions can be used to access them.
gnutls_x509_name_constraints_get_permitted (gnutls_x509_name_constraints_t
nc, unsigned
idx, unsigned *
type, gnutls_datum_t *
name)
gnutls_x509_name_constraints_get_excluded (gnutls_x509_name_constraints_t
nc, unsigned
idx, unsigned *
type, gnutls_datum_t *
name)
gnutls_x509_name_constraints_add_permitted (gnutls_x509_name_constraints_t
nc, gnutls_x509_subject_alt_name_t
type, const gnutls_datum_t *
name)
gnutls_x509_name_constraints_add_excluded (gnutls_x509_name_constraints_t
nc, gnutls_x509_subject_alt_name_t
type, const gnutls_datum_t *
name)
gnutls_x509_name_constraints_check (gnutls_x509_name_constraints_t
nc, gnutls_x509_subject_alt_name_t
type, const gnutls_datum_t *
name)
gnutls_x509_name_constraints_check_crt (gnutls_x509_name_constraints_t
nc, gnutls_x509_subject_alt_name_t
type, gnutls_x509_crt_t
cert)
Other utility functions are listed below.
gnutls_x509_name_constraints_init (gnutls_x509_name_constraints_t *
nc)
gnutls_x509_name_constraints_deinit (gnutls_x509_name_constraints_t
nc)
Similar functions exist for all of the other supported extensions, listed in tab:x509-ext.
Extension | OID | Description
|
---|---|---|
Subject key id | 2.5.29.14 |
An identifier of the key of the subject.
|
Key usage | 2.5.29.15 |
Constraints the key's usage of the certificate.
|
Private key usage period | 2.5.29.16 |
Constraints the validity time of the private key.
|
Subject alternative name | 2.5.29.17 |
Alternative names to subject's distinguished name.
|
Issuer alternative name | 2.5.29.18 |
Alternative names to the issuer's distinguished name.
|
Basic constraints | 2.5.29.19 |
Indicates whether this is a CA certificate or not, and specify the
maximum path lengths of certificate chains.
|
Name constraints | 2.5.29.30 |
A field in CA certificates that restricts the scope of the name of
issued certificates.
|
CRL distribution points | 2.5.29.31 |
This extension is set by the CA, in order to inform about the issued
CRLs.
|
Certificate policy | 2.5.29.32 |
This extension is set to indicate the certificate policy as object
identifier and may contain a descriptive string or URL.
|
Authority key identifier | 2.5.29.35 |
An identifier of the key of the issuer of the certificate. That is
used to distinguish between different keys of the same issuer.
|
Extended key usage | 2.5.29.37 |
Constraints the purpose of the certificate.
|
Authority information access | 1.3.6.1.5.5.7.1.1 |
Information on services by the issuer of the certificate.
|
Proxy Certification Information | 1.3.6.1.5.5.7.1.14 |
Proxy Certificates includes this extension that contains the OID of
the proxy policy language used, and can specify limits on the maximum
lengths of proxy chains. Proxy Certificates are specified in
[RFC3820].
|
Table 4.3: Supported X.509 certificate extensions.
Note, that there are also direct APIs to access extensions that may
be simpler to use for non-complex extensions. They are available
in x509.h
and some examples are listed below.
gnutls_x509_crt_get_basic_constraints (gnutls_x509_crt_t
cert, unsigned int *
critical, unsigned int *
ca, int *
pathlen)
gnutls_x509_crt_set_basic_constraints (gnutls_x509_crt_t
crt, unsigned int
ca, int
pathLenConstraint)
gnutls_x509_crt_get_key_usage (gnutls_x509_crt_t
cert, unsigned int *
key_usage, unsigned int *
critical)
gnutls_x509_crt_set_key_usage (gnutls_x509_crt_t
crt, unsigned int
usage)
Each X.509 certificate contains a public key that corresponds to a private key. To
get a unique identifier of the public key the gnutls_x509_crt_get_key_id
function is provided. To export the public key or its parameters you may need
to convert the X.509 structure to a gnutls_pubkey_t
. See
Abstract public keys for more information.
crt: Holds the certificate
flags: should be 0 for now
output_data: will contain the key ID
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will return a unique ID that depends on the public key parameters. This ID can be used in checking whether a certificate corresponds to the given private key.
If the buffer provided is not long enough to hold the output, then *output_data_size is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned. The output will normally be a SHA-1 hash output, which is 20 bytes.
Returns: In case of failure a negative error code will be returned, and 0 on success.
The private key parameters may be directly accessed by using one of the following functions.
gnutls_x509_privkey_get_pk_algorithm2 (gnutls_x509_privkey_t
key, unsigned int *
bits)
gnutls_x509_privkey_export_rsa_raw2 (gnutls_x509_privkey_t
key, gnutls_datum_t *
m, gnutls_datum_t *
e, gnutls_datum_t *
d, gnutls_datum_t *
p, gnutls_datum_t *
q, gnutls_datum_t *
u, gnutls_datum_t *
e1, gnutls_datum_t *
e2)
gnutls_x509_privkey_export_ecc_raw (gnutls_x509_privkey_t
key, gnutls_ecc_curve_t *
curve, gnutls_datum_t *
x, gnutls_datum_t *
y, gnutls_datum_t *
k)
gnutls_x509_privkey_export_dsa_raw (gnutls_x509_privkey_t
key, gnutls_datum_t *
p, gnutls_datum_t *
q, gnutls_datum_t *
g, gnutls_datum_t *
y, gnutls_datum_t *
x)
gnutls_x509_privkey_get_key_id (gnutls_x509_privkey_t
key, unsigned int
flags, unsigned char *
output_data, size_t *
output_data_size)
Verifying certificate paths is important in X.509 authentication. For this purpose the following functions are provided.
list: The structure of the list
clist: A list of CAs
clist_size: The length of the CA list
flags: should be 0 or an or'ed sequence of
GNUTLS_TL
options.This function will add the given certificate authorities to the trusted list. The list of CAs must not be deinitialized during this structure's lifetime.
If the flag
GNUTLS_TL_NO_DUPLICATES
is specified, then the providedclist
entries that are duplicates will not be added to the list and will be deinitialized.Returns: The number of added elements is returned.
Since: 3.0.0
list: The structure of the list
cert: A certificate
name: An identifier for the certificate
name_size: The size of the identifier
flags: should be 0.
This function will add the given certificate to the trusted list and associate it with a name. The certificate will not be be used for verification with
gnutls_x509_trust_list_verify_crt()
but only withgnutls_x509_trust_list_verify_named_crt()
.In principle this function can be used to set individual "server" certificates that are trusted by the user for that specific server but for no other purposes.
The certificate must not be deinitialized during the lifetime of the trusted list.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0.0
list: The structure of the list
crl_list: A list of CRLs
crl_size: The length of the CRL list
flags: if GNUTLS_TL_VERIFY_CRL is given the CRLs will be verified before being added.
verification_flags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL
This function will add the given certificate revocation lists to the trusted list. The list of CRLs must not be deinitialized during this structure's lifetime.
This function must be called after
gnutls_x509_trust_list_add_cas()
to allow verifying the CRLs for validity.Returns: The number of added elements is returned.
Since: 3.0
list: The structure of the list
cert_list: is the certificate list to be verified
cert_list_size: is the certificate list size
flags: Flags that may be used to change the verification algorithm. Use OR of the gnutls_certificate_verify_flags enumerations.
voutput: will hold the certificate verification output.
func: If non-null will be called on each chain element verification with the output.
This function will try to verify the given certificate and return its status. The
verify
parameter will hold an OR'ed sequence ofgnutls_certificate_status_t
flags.Additionally a certificate verification profile can be specified from the ones in
gnutls_certificate_verification_profiles_t
by ORing the result ofGNUTLS_PROFILE_TO_VFLAGS()
to the verification flags.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
list: The structure of the list
cert_list: is the certificate list to be verified
cert_list_size: is the certificate list size
data: an array of typed data
elements: the number of data elements
flags: Flags that may be used to change the verification algorithm. Use OR of the gnutls_certificate_verify_flags enumerations.
voutput: will hold the certificate verification output.
func: If non-null will be called on each chain element verification with the output.
This function will try to verify the given certificate and return its status. The
verify
parameter will hold an OR'ed sequence ofgnutls_certificate_status_t
flags.Additionally a certificate verification profile can be specified from the ones in
gnutls_certificate_verification_profiles_t
by ORing the result ofGNUTLS_PROFILE_TO_VFLAGS()
to the verification flags.The acceptable
data
types areGNUTLS_DT_DNS_HOSTNAME
andGNUTLS_DT_KEY_PURPOSE_OID
. The former accepts as data a null-terminated hostname, and the latter a null-terminated object identifier (e.g.,GNUTLS_KP_TLS_WWW_SERVER
). If a DNS hostname is provided then this function will compare the hostname in the certificate against the given. If names do not match theGNUTLS_CERT_UNEXPECTED_OWNER
status flag will be set. If a key purpose OID is provided and the end-certificate contains the extended key usage PKIX extension, it will be required to be have the provided key purpose or be marked for any purpose, otherwise verification will fail withGNUTLS_CERT_SIGNER_CONSTRAINTS_FAILURE
status.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value. Note that verification failure will not result to an error code, onlyvoutput
will be updated.Since: 3.3.8
list: The structure of the list
cert: is the certificate to be verified
name: is the certificate's name
name_size: is the certificate's name size
flags: Flags that may be used to change the verification algorithm. Use OR of the gnutls_certificate_verify_flags enumerations.
voutput: will hold the certificate verification output.
func: If non-null will be called on each chain element verification with the output.
This function will try to find a certificate that is associated with the provided name –see
gnutls_x509_trust_list_add_named_crt()
. If a match is found the certificate is considered valid. In addition to that this function will also check CRLs. Thevoutput
parameter will hold an OR'ed sequence ofgnutls_certificate_status_t
flags.Additionally a certificate verification profile can be specified from the ones in
gnutls_certificate_verification_profiles_t
by ORing the result ofGNUTLS_PROFILE_TO_VFLAGS()
to the verification flags.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0.0
list: The structure of the list
ca_file: A file containing a list of CAs (optional)
crl_file: A file containing a list of CRLs (optional)
type: The format of the certificates
tl_flags: GNUTLS_TL_*
tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL
This function will add the given certificate authorities to the trusted list. pkcs11 URLs are also accepted, instead of files, by this function.
Returns: The number of added elements is returned.
Since: 3.1
list: The structure of the list
cas: A buffer containing a list of CAs (optional)
crls: A buffer containing a list of CRLs (optional)
type: The format of the certificates
tl_flags: GNUTLS_TL_*
tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL
This function will add the given certificate authorities to the trusted list.
Returns: The number of added elements is returned.
Since: 3.1
list: The structure of the list
tl_flags: GNUTLS_TL_*
tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL
This function adds the system's default trusted certificate authorities to the trusted list. Note that on unsupported system this function returns
GNUTLS_E_UNIMPLEMENTED_FEATURE
.Returns: The number of added elements or a negative error code on error.
Since: 3.1
The verification function will verify a given certificate chain against a list of certificate
authorities and certificate revocation lists, and output
a bit-wise OR of elements of the gnutls_certificate_status_t
enumeration shown in gnutls_certificate_status_t. The GNUTLS_CERT_INVALID
flag
is always set on a verification error and more detailed flags will also be set when appropriate.
GNUTLS_CERT_INVALID
GNUTLS_CERT_SIGNATURE_FAILURE
and GNUTLS_CERT_SIGNER_NOT_FOUND
).
GNUTLS_CERT_REVOKED
GNUTLS_CERT_SIGNER_NOT_FOUND
GNUTLS_CERT_SIGNER_NOT_CA
GNUTLS_CERT_INSECURE_ALGORITHM
GNUTLS_CERT_NOT_ACTIVATED
GNUTLS_CERT_EXPIRED
GNUTLS_CERT_SIGNATURE_FAILURE
GNUTLS_CERT_REVOCATION_DATA_SUPERSEDED
GNUTLS_CERT_UNEXPECTED_OWNER
GNUTLS_CERT_REVOCATION_DATA_ISSUED_IN_FUTURE
GNUTLS_CERT_SIGNER_CONSTRAINTS_FAILURE
GNUTLS_CERT_MISMATCH
Figure 4.2: The gnutls_certificate_status_t
enumeration.
An example of certificate verification is shown in ex-verify2. It is also possible to have a set of certificates that are trusted for a particular server but not to authorize other certificates. This purpose is served by the functions gnutls_x509_trust_list_add_named_crt and gnutls_x509_trust_list_verify_named_crt.
When operating in the context of a TLS session, the trusted certificate authority list may also be set using:
gnutls_certificate_set_x509_trust_file (gnutls_certificate_credentials_t
cred, const char *
cafile, gnutls_x509_crt_fmt_t
type)
gnutls_certificate_set_x509_trust_dir (gnutls_certificate_credentials_t
cred, const char *
ca_dir, gnutls_x509_crt_fmt_t
type)
gnutls_certificate_set_x509_crl_file (gnutls_certificate_credentials_t
res, const char *
crlfile, gnutls_x509_crt_fmt_t
type)
gnutls_certificate_set_x509_system_trust (gnutls_certificate_credentials_t
cred)
These functions allow the specification of the trusted certificate authorities, either via a file, a directory or use the system-specified certificate authories. Unless the authorities are application specific, it is generally recommended to use the system trust storage (see gnutls_certificate_set_x509_system_trust).
Unlike the previous section it is not required to setup a trusted list, and
the function gnutls_certificate_verify_peers3
is used to verify the peer's certificate chain and identity. The reported
verification status is identical to the verification functions described
in the previous section.
Note that in certain cases it is required to check the marked purpose of
the end certificate (e.g. GNUTLS_KP_TLS_WWW_SERVER
); in these cases
the more advanced gnutls_certificate_verify_peers should be used instead.
There is also the possibility to pass some input to the verification
functions in the form of flags. For gnutls_x509_trust_list_verify_crt2 the
flags are passed directly, but for
gnutls_certificate_verify_peers3, the flags are set using
gnutls_certificate_set_verify_flags. All the available
flags are part of the enumeration
gnutls_certificate_verify_flags
shown in gnutls_certificate_verify_flags.
GNUTLS_VERIFY_DISABLE_CA_SIGN
GNUTLS_VERIFY_DO_NOT_ALLOW_SAME
GNUTLS_VERIFY_ALLOW_ANY_X509_V1_CA_CRT
GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2
GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5
GNUTLS_VERIFY_DISABLE_TIME_CHECKS
GNUTLS_VERIFY_DISABLE_TRUSTED_TIME_CHECKS
GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT
GNUTLS_VERIFY_DISABLE_CRL_CHECKS
GNUTLS_VERIFY_ALLOW_UNSORTED_CHAIN
GNUTLS_VERIFY_DO_NOT_ALLOW_UNSORTED_CHAIN
GNUTLS_VERIFY_DO_NOT_ALLOW_WILDCARDS
Figure 4.3: The gnutls_certificate_verify_flags
enumeration.
Some systems provide a system wide trusted certificate storage accessible using the PKCS #11 API. That is, the trusted certificates are queried and accessed using the PKCS #11 API, and trusted certificate properties, such as purpose, are marked using attached extensions. One example is the p11-kit trust module6.
These special PKCS #11 modules can be used for GnuTLS certificate verification if marked as trust
policy modules, i.e., with trust-policy: yes
in the p11-kit module file.
The way to use them is by specifying to the file verification function (e.g., gnutls_certificate_set_x509_trust_file),
a pkcs11 URL, or simply pkcs11:
to use all the marked with trust policy modules.
The trust modules of p11-kit assign a purpose to trusted authorities using the extended key usage object identifiers. The common purposes are shown in tab:purposes. Note that typically according to [RFC5280] the extended key usage object identifiers apply to end certificates. Their application to CA certificates is an extension used by the trust modules.
Purpose | OID | Description
|
---|---|---|
GNUTLS_KP_TLS_WWW_SERVER | 1.3.6.1.5.5.7.3.1 |
The certificate is to be used for TLS WWW authentication. When in a CA certificate, it
indicates that the CA is allowed to sign certificates for TLS WWW authentication.
|
GNUTLS_KP_TLS_WWW_CLIENT | 1.3.6.1.5.5.7.3.2 |
The certificate is to be used for TLS WWW client authentication. When in a CA certificate, it
indicates that the CA is allowed to sign certificates for TLS WWW client authentication.
|
GNUTLS_KP_CODE_SIGNING | 1.3.6.1.5.5.7.3.3 |
The certificate is to be used for code signing. When in a CA certificate, it
indicates that the CA is allowed to sign certificates for code signing.
|
GNUTLS_KP_EMAIL_PROTECTION | 1.3.6.1.5.5.7.3.4 |
The certificate is to be used for email protection. When in a CA certificate, it
indicates that the CA is allowed to sign certificates for email users.
|
GNUTLS_KP_OCSP_SIGNING | 1.3.6.1.5.5.7.3.9 |
The certificate is to be used for signing OCSP responses. When in a CA certificate, it
indicates that the CA is allowed to sign certificates which sign OCSP reponses.
|
GNUTLS_KP_ANY | 2.5.29.37.0 |
The certificate is to be used for any purpose. When in a CA certificate, it
indicates that the CA is allowed to sign any kind of certificates.
|
Table 4.4: Key purpose object identifiers.
With such modules, it is recommended to use the verification functions gnutls_x509_trust_list_verify_crt2,
or gnutls_certificate_verify_peers, which allow to explicitly specify the key purpose. The
other verification functions which do not allow setting a purpose, would operate as if
GNUTLS_KP_TLS_WWW_SERVER
was requested from the trusted authorities.
The OpenPGP key authentication relies on a distributed trust model, called the “web of trust”. The “web of trust” uses a decentralized system of trusted introducers, which are the same as a CA. OpenPGP allows anyone to sign anyone else's public key. When Alice signs Bob's key, she is introducing Bob's key to anyone who trusts Alice. If someone trusts Alice to introduce keys, then Alice is a trusted introducer in the mind of that observer. For example in fig-openpgp, David trusts Alice to be an introducer and Alice signed Bob's key thus Dave trusts Bob's key to be the real one.
There are some key points that are important in that model. In the example Alice has to sign Bob's key, only if she is sure that the key belongs to Bob. Otherwise she may also make Dave falsely believe that this is Bob's key. Dave has also the responsibility to know who to trust. This model is similar to real life relations.
Just see how Charlie behaves in the previous example. Although he has signed Bob's key - because he knows, somehow, that it belongs to Bob - he does not trust Bob to be an introducer. Charlie decided to trust only Kevin, for some reason. A reason could be that Bob is lazy enough, and signs other people's keys without being sure that they belong to the actual owner.
Field | Description
|
---|---|
version |
The field that indicates the version of the OpenPGP structure.
|
user ID |
An RFC 2822 string that identifies the owner of the key. There may be
multiple user identifiers in a key.
|
public key |
The main public key of the certificate.
|
expiration |
The expiration time of the main public key.
|
public subkey |
An additional public key of the certificate. There may be multiple subkeys
in a certificate.
|
public subkey expiration |
The expiration time of the subkey.
|
Table 4.5: OpenPGP certificate fields.
In GnuTLS the OpenPGP certificate structures
[RFC2440] are handled using the gnutls_openpgp_crt_t
type.
A typical certificate contains the user ID, which is an RFC 2822
mail and name address, a public key, possibly a number of additional
public keys (called subkeys), and a number of signatures. The various
fields are shown in Table 4.5.
The additional subkeys may provide key for various different purposes, e.g. one key to encrypt mail, and another to sign a TLS key exchange. Each subkey is identified by a unique key ID. The keys that are to be used in a TLS key exchange that requires signatures are called authentication keys in the OpenPGP jargon. The mapping of TLS key exchange methods to public keys is shown in tab:openpgp-key-exchange.
Key exchange | Public key requirements
|
---|---|
RSA |
An RSA public key that allows encryption.
|
DHE_RSA |
An RSA public key that is marked for authentication.
|
ECDHE_RSA |
An RSA public key that is marked for authentication.
|
DHE_DSS |
A DSA public key that is marked for authentication.
|
Table 4.6: The types of (sub)keys required for the various TLS key exchange methods.
The corresponding private keys are stored in the
gnutls_openpgp_privkey_t
type. All the prototypes for the key
handling functions can be found in gnutls/openpgp.h.
The verification functions of OpenPGP keys, included in GnuTLS, are simple ones, and do not use the features of the “web of trust”. For that reason, if the verification needs are complex, the assistance of external tools like GnuPG and GPGME7 is recommended.
In GnuTLS there is a verification function for OpenPGP certificates, the gnutls_openpgp_crt_verify_ring. This checks an OpenPGP key against a given set of public keys (keyring) and returns the key status. The key verification status is the same as in X.509 certificates, although the meaning and interpretation are different. For example an OpenPGP key may be valid, if the self signature is ok, even if no signers were found. The meaning of verification status flags is the same as in the X.509 certificates (see Figure 4.3).
key: the structure that holds the key.
keyring: holds the keyring to check against
flags: unused (should be 0)
verify: will hold the certificate verification output.
Verify all signatures in the key, using the given set of keys (keyring).
The key verification output will be put in
verify
and will be one or more of thegnutls_certificate_status_t
enumerated elements bitwise or'd.Note that this function does not verify using any "web of trust". You may use GnuPG for that purpose, or any other external PGP application.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
key: the structure that holds the key.
flags: unused (should be 0)
verify: will hold the key verification output.
Verifies the self signature in the key. The key verification output will be put in
verify
and will be one or more of the gnutls_certificate_status_t enumerated elements bitwise or'd.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
Similarly with X.509 certificates, one needs to specify the OpenPGP keyring file in the credentials structure. The certificates in this file will be used by gnutls_certificate_verify_peers3 to verify the signatures in the certificate sent by the peer.
c: A certificate credentials structure
file: filename of the keyring.
format: format of keyring.
The function is used to set keyrings that will be used internally by various OpenPGP functions. For example to find a key when it is needed for an operations. The keyring will also be used at the verification functions.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
The verification of X.509 certificates in the HTTPS and other Internet protocols is typically done by loading a trusted list of commercial Certificate Authorities (see gnutls_certificate_set_x509_system_trust), and using them as trusted anchors. However, there are several examples (eg. the Diginotar incident) where one of these authorities was compromised. This risk can be mitigated by using in addition to CA certificate verification, other verification methods. In this section we list the available in GnuTLS methods.
It is possible to use a trust on first use (TOFU) authentication method in GnuTLS. That is the concept used by the SSH programs, where the public key of the peer is not verified, or verified in an out-of-bound way, but subsequent connections to the same peer require the public key to remain the same. Such a system in combination with the typical CA verification of a certificate, and OCSP revocation checks, can help to provide multiple factor verification, where a single point of failure is not enough to compromise the system. For example a server compromise may be detected using OCSP, and a CA compromise can be detected using the trust on first use method. Such a hybrid system with X.509 and trust on first use authentication is shown in Simple client example with SSH-style certificate verification.
See Certificate verification on how to use the available functionality.
The DANE protocol is a protocol that can be used to verify TLS certificates using the DNS (or better DNSSEC) protocols. The DNS security extensions (DNSSEC) provide an alternative public key infrastructure to the commercial CAs that are typically used to sign TLS certificates. The DANE protocol takes advantage of the DNSSEC infrastructure to verify TLS certificates. This can be in addition to the verification by CA infrastructure or may even replace it where DNSSEC is fully deployed. Note however, that DNSSEC deployment is fairly new and it would be better to use it as an additional verification method rather than the only one.
The DANE functionality is provided by the libgnutls-dane
library that is shipped
with GnuTLS and the function prototypes are in gnutls/dane.h
.
See Certificate verification for information on how to use the library.
Note however, that the DANE RFC mandates the verification methods one should use in addition to the validation via DNSSEC TLSA entries. GnuTLS doesn't follow that RFC requirement, and the term DANE verification in this manual refers to the TLSA entry verification. In GnuTLS any other verification methods can be used (e.g., PKIX or TOFU) on top of DANE.
In this section we will provide some information about digital signatures, how they work, and give the rationale for disabling some of the algorithms used.
Digital signatures work by using somebody's secret key to sign some arbitrary data. Then anybody else could use the public key of that person to verify the signature. Since the data may be arbitrary it is not suitable input to a cryptographic digital signature algorithm. For this reason and also for performance cryptographic hash algorithms are used to preprocess the input to the signature algorithm. This works as long as it is difficult enough to generate two different messages with the same hash algorithm output. In that case the same signature could be used as a proof for both messages. Nobody wants to sign an innocent message of donating 1 euro to Greenpeace and find out that he donated 1.000.000 euros to Bad Inc.
For a hash algorithm to be called cryptographic the following three requirements must hold:
The last two requirements in the list are the most important in digital signatures. These protect against somebody who would like to generate two messages with the same hash output. When an algorithm is considered broken usually it means that the Collision resistance of the algorithm is less than brute force. Using the birthday paradox the brute force attack takes 2^((hash size) / 2) operations. Today colliding certificates using the MD5 hash algorithm have been generated as shown in [WEGER].
There has been cryptographic results for the SHA-1 hash algorithms as well, although they are not yet critical. Before 2004, MD5 had a presumed collision strength of 2^64, but it has been showed to have a collision strength well under 2^50. As of November 2005, it is believed that SHA-1's collision strength is around 2^63. We consider this sufficiently hard so that we still support SHA-1. We anticipate that SHA-256/386/512 will be used in publicly-distributed certificates in the future. When 2^63 can be considered too weak compared to the computer power available sometime in the future, SHA-1 will be disabled as well. The collision attacks on SHA-1 may also get better, given the new interest in tools for creating them.
If you connect to a server and use GnuTLS' functions to verify the
certificate chain, and get a GNUTLS_CERT_INSECURE_ALGORITHM
validation error (see Verifying X.509 certificate paths), it means
that somewhere in the certificate chain there is a certificate signed
using RSA-MD2
or RSA-MD5
. These two digital signature
algorithms are considered broken, so GnuTLS fails verifying
the certificate. In some situations, it may be useful to be
able to verify the certificate chain anyway, assuming an attacker did
not utilize the fact that these signatures algorithms are broken.
This section will give help on how to achieve that.
It is important to know that you do not have to enable any of
the flags discussed here to be able to use trusted root CA
certificates self-signed using RSA-MD2
or RSA-MD5
. The
certificates in the trusted list are considered trusted irrespective
of the signature.
If you are using gnutls_certificate_verify_peers3 to verify the certificate chain, you can call gnutls_certificate_set_verify_flags with the flags:
GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2
GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5
gnutls_certificate_set_verify_flags (x509cred, GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5);
This will signal the verifier algorithm to enable RSA-MD5
when
verifying the certificates.
If you are using gnutls_x509_crt_verify or
gnutls_x509_crt_list_verify, you can pass the
GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5
parameter directly in the
flags
parameter.
If you are using these flags, it may also be a good idea to warn the
user when verification failure occur for this reason. The simplest is
to not use the flags by default, and only fall back to using them
after warning the user. If you wish to inspect the certificate chain
yourself, you can use gnutls_certificate_get_peers to extract
the raw server's certificate chain, gnutls_x509_crt_list_import to parse each of the certificates, and
then gnutls_x509_crt_get_signature_algorithm to find out the
signing algorithm used for each certificate. If any of the
intermediary certificates are using GNUTLS_SIGN_RSA_MD2
or
GNUTLS_SIGN_RSA_MD5
, you could present a warning.
Certificates are not the only structures involved in a public key infrastructure. Several other structures that are used for certificate requests, encrypted private keys, revocation lists, GnuTLS abstract key structures, etc., are discussed in this chapter.
A certificate request is a structure, which contain information about an applicant of a certificate service. It usually contains a private key, a distinguished name and secondary data such as a challenge password. GnuTLS supports the requests defined in PKCS #10 [RFC2986]. Other formats of certificate requests are not currently supported.
A certificate request can be generated by associating it with a private key, setting the subject's information and finally self signing it. The last step ensures that the requester is in possession of the private key.
gnutls_x509_crq_set_version (gnutls_x509_crq_t
crq, unsigned int
version)
gnutls_x509_crq_set_dn (gnutls_x509_crq_t
crq, const char *
dn, const char **
err)
gnutls_x509_crq_set_dn_by_oid (gnutls_x509_crq_t
crq, const char *
oid, unsigned int
raw_flag, const void *
data, unsigned int
sizeof_data)
gnutls_x509_crq_set_key_usage (gnutls_x509_crq_t
crq, unsigned int
usage)
gnutls_x509_crq_set_key_purpose_oid (gnutls_x509_crq_t
crq, const void *
oid, unsigned int
critical)
gnutls_x509_crq_set_basic_constraints (gnutls_x509_crq_t
crq, unsigned int
ca, int
pathLenConstraint)
The gnutls_x509_crq_set_key and gnutls_x509_crq_sign2 functions associate the request with a private key and sign it. If a request is to be signed with a key residing in a PKCS #11 token it is recommended to use the signing functions shown in Abstract key types.
crq: should contain a
gnutls_x509_crq_t
structurekey: holds a private key
This function will set the public parameters from the given private key to the request.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crq: should contain a
gnutls_x509_crq_t
structurekey: holds a private key
dig: The message digest to use, i.e.,
GNUTLS_DIG_SHA1
flags: must be 0
This function will sign the certificate request with a private key. This must be the same key as the one used in
gnutls_x509_crt_set_key()
since a certificate request is self signed.This must be the last step in a certificate request generation since all the previously set parameters are now signed.
Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.GNUTLS_E_ASN1_VALUE_NOT_FOUND
is returned if you didn't set all information in the certificate request (e.g., the version usinggnutls_x509_crq_set_version()
).
The following example is about generating a certificate request, and a private key. A certificate request can be later be processed by a CA which should return a signed certificate.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <string.h> #include <gnutls/gnutls.h> #include <gnutls/x509.h> #include <gnutls/abstract.h> #include <time.h> /* This example will generate a private key and a certificate * request. */ int main(void) { gnutls_x509_crq_t crq; gnutls_x509_privkey_t key; unsigned char buffer[10 * 1024]; size_t buffer_size = sizeof(buffer); unsigned int bits; gnutls_global_init(); /* Initialize an empty certificate request, and * an empty private key. */ gnutls_x509_crq_init(&crq); gnutls_x509_privkey_init(&key); /* Generate an RSA key of moderate security. */ bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_RSA, GNUTLS_SEC_PARAM_MEDIUM); gnutls_x509_privkey_generate(key, GNUTLS_PK_RSA, bits, 0); /* Add stuff to the distinguished name */ gnutls_x509_crq_set_dn_by_oid(crq, GNUTLS_OID_X520_COUNTRY_NAME, 0, "GR", 2); gnutls_x509_crq_set_dn_by_oid(crq, GNUTLS_OID_X520_COMMON_NAME, 0, "Nikos", strlen("Nikos")); /* Set the request version. */ gnutls_x509_crq_set_version(crq, 1); /* Set a challenge password. */ gnutls_x509_crq_set_challenge_password(crq, "something to remember here"); /* Associate the request with the private key */ gnutls_x509_crq_set_key(crq, key); /* Self sign the certificate request. */ gnutls_x509_crq_sign2(crq, key, GNUTLS_DIG_SHA1, 0); /* Export the PEM encoded certificate request, and * display it. */ gnutls_x509_crq_export(crq, GNUTLS_X509_FMT_PEM, buffer, &buffer_size); printf("Certificate Request: \n%s", buffer); /* Export the PEM encoded private key, and * display it. */ buffer_size = sizeof(buffer); gnutls_x509_privkey_export(key, GNUTLS_X509_FMT_PEM, buffer, &buffer_size); printf("\n\nPrivate key: \n%s", buffer); gnutls_x509_crq_deinit(crq); gnutls_x509_privkey_deinit(key); return 0; }
A certificate revocation list (CRL) is a structure issued by an authority periodically containing a list of revoked certificates serial numbers. The CRL structure is signed with the issuing authorities' keys. A typical CRL contains the fields as shown in tab:crl. Certificate revocation lists are used to complement the expiration date of a certificate, in order to account for other reasons of revocation, such as compromised keys, etc.
Each CRL is valid for limited amount of time and is required to provide, except for the current issuing time, also the issuing time of the next update.
Field | Description
|
---|---|
version |
The field that indicates the version of the CRL structure.
|
signature |
A signature by the issuing authority.
|
issuer |
Holds the issuer's distinguished name.
|
thisUpdate |
The issuing time of the revocation list.
|
nextUpdate |
The issuing time of the revocation list that will update that one.
|
revokedCertificates |
List of revoked certificates serial numbers.
|
extensions |
Optional CRL structure extensions.
|
Table 4.7: Certificate revocation list fields.
The basic CRL structure functions follow.
gnutls_x509_crl_init (gnutls_x509_crl_t *
crl)
gnutls_x509_crl_import (gnutls_x509_crl_t
crl, const gnutls_datum_t *
data, gnutls_x509_crt_fmt_t
format)
gnutls_x509_crl_export (gnutls_x509_crl_t
crl, gnutls_x509_crt_fmt_t
format, void *
output_data, size_t *
output_data_size)
gnutls_x509_crl_export (gnutls_x509_crl_t
crl, gnutls_x509_crt_fmt_t
format, void *
output_data, size_t *
output_data_size)
The most important function that extracts the certificate revocation information from a CRL is gnutls_x509_crl_get_crt_serial. Other functions that return other fields of the CRL structure are also provided.
crl: should contain a
gnutls_x509_crl_t
structureindx: the index of the certificate to extract (starting from 0)
serial: where the serial number will be copied
serial_size: initially holds the size of serial
t: if non null, will hold the time this certificate was revoked
This function will retrieve the serial number of the specified, by the index, revoked certificate.
Note that this function will have performance issues in large sequences of revoked certificates. In that case use
gnutls_x509_crl_iter_crt_serial()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
gnutls_x509_crl_get_version (gnutls_x509_crl_t
crl)
gnutls_x509_crl_get_issuer_dn (const gnutls_x509_crl_t
crl, char *
buf, size_t *
sizeof_buf)
gnutls_x509_crl_get_issuer_dn2 (gnutls_x509_crl_t
crl, gnutls_datum_t *
dn)
gnutls_x509_crl_get_this_update (gnutls_x509_crl_t
crl)
gnutls_x509_crl_get_next_update (gnutls_x509_crl_t
crl)
gnutls_x509_crl_get_crt_count (gnutls_x509_crl_t
crl)
The following functions can be used to generate a CRL.
gnutls_x509_crl_set_version (gnutls_x509_crl_t
crl, unsigned int
version)
gnutls_x509_crl_set_crt_serial (gnutls_x509_crl_t
crl, const void *
serial, size_t
serial_size, time_t
revocation_time)
gnutls_x509_crl_set_crt (gnutls_x509_crl_t
crl, gnutls_x509_crt_t
crt, time_t
revocation_time)
gnutls_x509_crl_set_next_update (gnutls_x509_crl_t
crl, time_t
exp_time)
gnutls_x509_crl_set_this_update (gnutls_x509_crl_t
crl, time_t
act_time)
The gnutls_x509_crl_sign2 and gnutls_x509_crl_privkey_sign functions sign the revocation list with a private key. The latter function can be used to sign with a key residing in a PKCS #11 token.
crl: should contain a gnutls_x509_crl_t structure
issuer: is the certificate of the certificate issuer
issuer_key: holds the issuer's private key
dig: The message digest to use. GNUTLS_DIG_SHA1 is the safe choice unless you know what you're doing.
flags: must be 0
This function will sign the CRL with the issuer's private key, and will copy the issuer's information into the CRL.
This must be the last step in a certificate CRL since all the previously set parameters are now signed.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crl: should contain a gnutls_x509_crl_t structure
issuer: is the certificate of the certificate issuer
issuer_key: holds the issuer's private key
dig: The message digest to use. GNUTLS_DIG_SHA1 is the safe choice unless you know what you're doing.
flags: must be 0
This function will sign the CRL with the issuer's private key, and will copy the issuer's information into the CRL.
This must be the last step in a certificate CRL since all the previously set parameters are now signed.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since 2.12.0
Few extensions on the CRL structure are supported, including the CRL number extension and the authority key identifier.
gnutls_x509_crl_set_number (gnutls_x509_crl_t
crl, const void *
nr, size_t
nr_size)
gnutls_x509_crl_set_authority_key_id (gnutls_x509_crl_t
crl, const void *
id, size_t
id_size)
Certificates may be revoked before their expiration time has been reached. There are several reasons for revoking certificates, but a typical situation is when the private key associated with a certificate has been compromised. Traditionally, Certificate Revocation Lists (CRLs) have been used by application to implement revocation checking, however, several problems with CRLs have been identified [RIVESTCRL].
The Online Certificate Status Protocol, or OCSP [RFC2560], is a widely implemented protocol to perform certificate revocation status checking. An application that wish to verify the identity of a peer will verify the certificate against a set of trusted certificates and then check whether the certificate is listed in a CRL and/or perform an OCSP check for the certificate.
Note that in the context of a TLS session the server may provide an OCSP response that will used during the TLS certificate verification (see gnutls_certificate_verify_peers2). You may obtain this response using gnutls_ocsp_status_request_get.
Before performing the OCSP query, the application will need to figure out the address of the OCSP server. The OCSP server address can be provided by the local user in manual configuration or may be stored in the certificate that is being checked. When stored in a certificate the OCSP server is in the extension field called the Authority Information Access (AIA). The following function extracts this information from a certificate.
gnutls_x509_crt_get_authority_info_access (gnutls_x509_crt_t
crt, unsigned int
seq, int
what, gnutls_datum_t *
data, unsigned int *
critical)
There are several functions in GnuTLS for creating and manipulating OCSP requests and responses. The general idea is that a client application create an OCSP request object, store some information about the certificate to check in the request, and then export the request in DER format. The request will then need to be sent to the OCSP responder, which needs to be done by the application (GnuTLS does not send and receive OCSP packets). Normally an OCSP response is received that the application will need to import into an OCSP response object. The digital signature in the OCSP response needs to be verified against a set of trust anchors before the information in the response can be trusted.
The ASN.1 structure of OCSP requests are briefly as follows. It is useful to review the structures to get an understanding of which fields are modified by GnuTLS functions.
OCSPRequest ::= SEQUENCE { tbsRequest TBSRequest, optionalSignature [0] EXPLICIT Signature OPTIONAL } TBSRequest ::= SEQUENCE { version [0] EXPLICIT Version DEFAULT v1, requestorName [1] EXPLICIT GeneralName OPTIONAL, requestList SEQUENCE OF Request, requestExtensions [2] EXPLICIT Extensions OPTIONAL } Request ::= SEQUENCE { reqCert CertID, singleRequestExtensions [0] EXPLICIT Extensions OPTIONAL } CertID ::= SEQUENCE { hashAlgorithm AlgorithmIdentifier, issuerNameHash OCTET STRING, -- Hash of Issuer's DN issuerKeyHash OCTET STRING, -- Hash of Issuers public key serialNumber CertificateSerialNumber }
The basic functions to initialize, import, export and deallocate OCSP requests are the following.
gnutls_ocsp_req_init (gnutls_ocsp_req_t *
req)
gnutls_ocsp_req_deinit (gnutls_ocsp_req_t
req)
gnutls_ocsp_req_import (gnutls_ocsp_req_t
req, const gnutls_datum_t *
data)
gnutls_ocsp_req_export (gnutls_ocsp_req_t
req, gnutls_datum_t *
data)
gnutls_ocsp_req_print (gnutls_ocsp_req_t
req, gnutls_ocsp_print_formats_t
format, gnutls_datum_t *
out)
To generate an OCSP request the issuer name hash, issuer key hash, and
the checked certificate's serial number are required. There are two
interfaces available for setting those in an OCSP request.
The is a low-level function when you have the
issuer name hash, issuer key hash, and certificate serial number in
binary form. The second is more useful if you have the
certificate (and its issuer) in a gnutls_x509_crt_t
type.
There is also a function to extract this information from existing an OCSP
request.
gnutls_ocsp_req_add_cert_id (gnutls_ocsp_req_t
req, gnutls_digest_algorithm_t
digest, const gnutls_datum_t *
issuer_name_hash, const gnutls_datum_t *
issuer_key_hash, const gnutls_datum_t *
serial_number)
gnutls_ocsp_req_add_cert (gnutls_ocsp_req_t
req, gnutls_digest_algorithm_t
digest, gnutls_x509_crt_t
issuer, gnutls_x509_crt_t
cert)
gnutls_ocsp_req_get_cert_id (gnutls_ocsp_req_t
req, unsigned
indx, gnutls_digest_algorithm_t *
digest, gnutls_datum_t *
issuer_name_hash, gnutls_datum_t *
issuer_key_hash, gnutls_datum_t *
serial_number)
Each OCSP request may contain a number of extensions. Extensions are identified by an Object Identifier (OID) and an opaque data buffer whose syntax and semantics is implied by the OID. You can extract or set those extensions using the following functions.
gnutls_ocsp_req_get_extension (gnutls_ocsp_req_t
req, unsigned
indx, gnutls_datum_t *
oid, unsigned int *
critical, gnutls_datum_t *
data)
gnutls_ocsp_req_set_extension (gnutls_ocsp_req_t
req, const char *
oid, unsigned int
critical, const gnutls_datum_t *
data)
A common OCSP Request extension is the nonce extension (OID 1.3.6.1.5.5.7.48.1.2), which is used to avoid replay attacks of earlier recorded OCSP responses. The nonce extension carries a value that is intended to be sufficiently random and unique so that an attacker will not be able to give a stale response for the same nonce.
gnutls_ocsp_req_get_nonce (gnutls_ocsp_req_t
req, unsigned int *
critical, gnutls_datum_t *
nonce)
gnutls_ocsp_req_set_nonce (gnutls_ocsp_req_t
req, unsigned int
critical, const gnutls_datum_t *
nonce)
gnutls_ocsp_req_randomize_nonce (gnutls_ocsp_req_t
req)
The OCSP response structures is a complex structure. A simplified overview of it is in tab:ocsp-response. Note that a response may contain information on multiple certificates.
Field | Description
|
---|---|
version |
The OCSP response version number (typically 1).
|
responder ID |
An identifier of the responder (DN name or a hash of its key).
|
issue time |
The time the response was generated.
|
thisUpdate |
The issuing time of the revocation information.
|
nextUpdate |
The issuing time of the revocation information that will update that one.
|
Revoked certificates
| |
certificate status |
The status of the certificate.
|
certificate serial |
The certificate's serial number.
|
revocationTime |
The time the certificate was revoked.
|
revocationReason |
The reason the certificate was revoked.
|
Table 4.8: The most important OCSP response fields.
We provide basic functions for initialization, importing, exporting and deallocating OCSP responses.
gnutls_ocsp_resp_init (gnutls_ocsp_resp_t *
resp)
gnutls_ocsp_resp_deinit (gnutls_ocsp_resp_t
resp)
gnutls_ocsp_resp_import (gnutls_ocsp_resp_t
resp, const gnutls_datum_t *
data)
gnutls_ocsp_resp_export (gnutls_ocsp_resp_t
resp, gnutls_datum_t *
data)
gnutls_ocsp_resp_print (gnutls_ocsp_resp_t
resp, gnutls_ocsp_print_formats_t
format, gnutls_datum_t *
out)
The utility function that extracts the revocation as well as other information from a response is shown below.
resp: should contain a
gnutls_ocsp_resp_t
structureindx: Specifies response number to get. Use (0) to get the first one.
digest: output variable with
gnutls_digest_algorithm_t
hash algorithmissuer_name_hash: output buffer with hash of issuer's DN
issuer_key_hash: output buffer with hash of issuer's public key
serial_number: output buffer with serial number of certificate to check
cert_status: a certificate status, a
gnutls_ocsp_cert_status_t
enum.this_update: time at which the status is known to be correct.
next_update: when newer information will be available, or (time_t)-1 if unspecified
revocation_time: when
cert_status
isGNUTLS_OCSP_CERT_REVOKED
, holds time of revocation.revocation_reason: revocation reason, a
gnutls_x509_crl_reason_t
enum.This function will return the certificate information of the
indx
'ed response in the Basic OCSP Responseresp
. The information returned corresponds to the OCSP SingleResponse structure except the final singleExtensions.Each of the pointers to output variables may be NULL to indicate that the caller is not interested in that value.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned. If you have reached the last CertID availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.
The possible revocation reasons available in an OCSP response are shown below.
GNUTLS_X509_CRLREASON_UNSPECIFIED
GNUTLS_X509_CRLREASON_KEYCOMPROMISE
GNUTLS_X509_CRLREASON_CACOMPROMISE
GNUTLS_X509_CRLREASON_AFFILIATIONCHANGED
GNUTLS_X509_CRLREASON_SUPERSEDED
GNUTLS_X509_CRLREASON_CESSATIONOFOPERATION
GNUTLS_X509_CRLREASON_CERTIFICATEHOLD
GNUTLS_X509_CRLREASON_REMOVEFROMCRL
GNUTLS_X509_CRLREASON_PRIVILEGEWITHDRAWN
GNUTLS_X509_CRLREASON_AACOMPROMISE
Figure 4.5: The revocation reasons
Note, that the OCSP response needs to be verified against some set of trust anchors before it can be relied upon. It is also important to check whether the received OCSP response corresponds to the certificate being checked.
gnutls_ocsp_resp_verify (gnutls_ocsp_resp_t
resp, gnutls_x509_trust_list_t
trustlist, unsigned int *
verify, unsigned int
flags)
gnutls_ocsp_resp_verify_direct (gnutls_ocsp_resp_t
resp, gnutls_x509_crt_t
issuer, unsigned int *
verify, unsigned int
flags)
gnutls_ocsp_resp_check_crt (gnutls_ocsp_resp_t
resp, unsigned int
indx, gnutls_x509_crt_t
crt)
Transferring or storing private keys in plain may not be a good idea, since any compromise is irreparable. Storing the keys in hardware security modules (see Smart cards and HSMs) could solve the storage problem but it is not always practical or efficient enough. This section describes ways to store and transfer encrypted private keys.
There are methods for key encryption, namely the PKCS #8, PKCS #12 and OpenSSL's custom encrypted private key formats. The PKCS #8 and the OpenSSL's method allow encryption of the private key, while the PKCS #12 method allows, in addition, the bundling of accompanying data into the structure. That is typically the corresponding certificate, as well as a trusted CA certificate.
Generic and higher level private key import functions are available, that import plain or encrypted keys and will auto-detect the encrypted key format.
pkey: The private key
data: The private key data to be imported
format: The format of the private key
password: A password (optional)
flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t
This function will import the given private key to the abstract
gnutls_privkey_t
structure.The supported formats are basic unencrypted key, PKCS8, PKCS12, and the openssl format.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
key: The structure to store the parsed key
data: The DER or PEM encoded key.
format: One of DER or PEM
password: A password (optional)
flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t
This function will import the given DER or PEM encoded key, to the native
gnutls_x509_privkey_t
format, irrespective of the input format. The input format is auto-detected.The supported formats are basic unencrypted key, PKCS8, PKCS12, and the openssl format.
If the provided key is encrypted but no password was given, then
GNUTLS_E_DECRYPTION_FAILED
is returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
Any keys imported using those functions can be imported to a certificate credentials structure using gnutls_certificate_set_key, or alternatively they can be directly imported using gnutls_certificate_set_x509_key_file2.
PKCS #8 keys can be imported and exported as normal private keys using
the functions below. An addition to the normal import functions, are
a password and a flags argument. The flags can be any element of the gnutls_pkcs_encrypt_flags_t
enumeration. Note however, that GnuTLS only supports the PKCS #5 PBES2
encryption scheme. Keys encrypted with the obsolete PBES1 scheme cannot
be decrypted.
gnutls_x509_privkey_import_pkcs8 (gnutls_x509_privkey_t
key, const gnutls_datum_t *
data, gnutls_x509_crt_fmt_t
format, const char *
password, unsigned int
flags)
gnutls_x509_privkey_export_pkcs8 (gnutls_x509_privkey_t
key, gnutls_x509_crt_fmt_t
format, const char *
password, unsigned int
flags, void *
output_data, size_t *
output_data_size)
gnutls_x509_privkey_export2_pkcs8 (gnutls_x509_privkey_t
key, gnutls_x509_crt_fmt_t
format, const char *
password, unsigned int
flags, gnutls_datum_t *
out)
GNUTLS_PKCS_PLAIN
GNUTLS_PKCS_USE_PKCS12_3DES
GNUTLS_PKCS_USE_PKCS12_ARCFOUR
GNUTLS_PKCS_USE_PKCS12_RC2_40
GNUTLS_PKCS_USE_PBES2_3DES
GNUTLS_PKCS_USE_PBES2_AES_128
GNUTLS_PKCS_USE_PBES2_AES_192
GNUTLS_PKCS_USE_PBES2_AES_256
GNUTLS_PKCS_NULL_PASSWORD
Figure 4.6: Encryption flags
A PKCS #12 structure [PKCS12] usually contains a user's private keys and certificates. It is commonly used in browsers to export and import the user's identities. A file containing such a key can be directly imported to a certificate credentials structure by using gnutls_certificate_set_x509_simple_pkcs12_file.
In GnuTLS the PKCS #12 structures are handled
using the gnutls_pkcs12_t
type. This is an abstract type that
may hold several gnutls_pkcs12_bag_t
types. The bag types are
the holders of the actual data, which may be certificates, private
keys or encrypted data. A bag of type encrypted should be decrypted
in order for its data to be accessed.
To reduce the complexity in parsing the structures the simple helper function gnutls_pkcs12_simple_parse is provided. For more advanced uses, manual parsing of the structure is required using the functions below.
gnutls_pkcs12_get_bag (gnutls_pkcs12_t
pkcs12, int
indx, gnutls_pkcs12_bag_t
bag)
gnutls_pkcs12_verify_mac (gnutls_pkcs12_t
pkcs12, const char *
pass)
gnutls_pkcs12_bag_decrypt (gnutls_pkcs12_bag_t
bag, const char *
pass)
gnutls_pkcs12_bag_get_count (gnutls_pkcs12_bag_t
bag)
p12: the PKCS12 blob.
password: optional password used to decrypt PKCS12 blob, bags and keys.
key: a structure to store the parsed private key.
chain: the corresponding to key certificate chain (may be
NULL
)chain_len: will be updated with the number of additional (may be
NULL
)extra_certs: optional pointer to receive an array of additional certificates found in the PKCS12 blob (may be
NULL
).extra_certs_len: will be updated with the number of additional certs (may be
NULL
).crl: an optional structure to store the parsed CRL (may be
NULL
).flags: should be zero or one of GNUTLS_PKCS12_SP_*
This function parses a PKCS12 blob in
p12blob
and extracts the private key, the corresponding certificate chain, any additional certificates and a CRL.The
extra_certs
andextra_certs_len
parameters are optional and both may be set toNULL
. If either is non-NULL
, then both must be set. The value forextra_certs
is allocated usinggnutls_malloc()
.Encrypted PKCS12 bags and PKCS8 private keys are supported, but only with password based security and the same password for all operations.
Note that a PKCS12 file may contain many keys and/or certificates, and there is no way to identify which key/certificate pair you want. For this reason this function is useful for PKCS12 files that contain only one key/certificate pair and/or one CRL.
If the provided structure has encrypted fields but no password is provided then this function returns
GNUTLS_E_DECRYPTION_FAILED
.Note that normally the chain constructed does not include self signed certificates, to comply with TLS' requirements. If, however, the flag
GNUTLS_PKCS12_SP_INCLUDE_SELF_SIGNED
is specified then self signed certificates will be included in the chain.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
gnutls_pkcs12_bag_get_data (gnutls_pkcs12_bag_t
bag, int
indx, gnutls_datum_t *
data)
gnutls_pkcs12_bag_get_key_id (gnutls_pkcs12_bag_t
bag, int
indx, gnutls_datum_t *
id)
gnutls_pkcs12_bag_get_friendly_name (gnutls_pkcs12_bag_t
bag, int
indx, char **
name)
The functions below are used to generate a PKCS #12 structure. An example of their usage is shown at PKCS12 structure generation example.
gnutls_pkcs12_set_bag (gnutls_pkcs12_t
pkcs12, gnutls_pkcs12_bag_t
bag)
gnutls_pkcs12_bag_encrypt (gnutls_pkcs12_bag_t
bag, const char *
pass, unsigned int
flags)
gnutls_pkcs12_generate_mac (gnutls_pkcs12_t
pkcs12, const char *
pass)
gnutls_pkcs12_bag_set_data (gnutls_pkcs12_bag_t
bag, gnutls_pkcs12_bag_type_t
type, const gnutls_datum_t *
data)
gnutls_pkcs12_bag_set_crl (gnutls_pkcs12_bag_t
bag, gnutls_x509_crl_t
crl)
gnutls_pkcs12_bag_set_crt (gnutls_pkcs12_bag_t
bag, gnutls_x509_crt_t
crt)
gnutls_pkcs12_bag_set_key_id (gnutls_pkcs12_bag_t
bag, int
indx, const gnutls_datum_t *
id)
gnutls_pkcs12_bag_set_friendly_name (gnutls_pkcs12_bag_t
bag, int
indx, const char *
name)
Unfortunately the structures discussed in the previous sections are not the only structures that may hold an encrypted private key. For example the OpenSSL library offers a custom key encryption method. Those structures are also supported in GnuTLS with gnutls_x509_privkey_import_openssl.
key: The structure to store the parsed key
data: The DER or PEM encoded key.
password: the password to decrypt the key (if it is encrypted).
This function will convert the given PEM encrypted to the native gnutls_x509_privkey_t format. The output will be stored in
key
.The
password
should be in ASCII. If the password is not provided or wrong thenGNUTLS_E_DECRYPTION_FAILED
will be returned.If the Certificate is PEM encoded it should have a header of "PRIVATE KEY" and the "DEK-Info" header.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
Tool to parse and generate X.509 certificates, requests and private keys. It can be used interactively or non interactively by specifying the template command line option.
The tool accepts files or URLs supported by GnuTLS. In case PIN is required for the URL access you can provide it using the environment variables GNUTLS_PIN and GNUTLS_SO_PIN.
This section was generated by AutoGen,
using the agtexi-cmd
template and the option descriptions for the certtool
program.
This software is released under the GNU General Public License, version 3 or later.
This is the automatically generated usage text for certtool.
The text printed is the same whether selected with the help
option
(--help) or the more-help
option (--more-help). more-help
will print
the usage text by passing it through a pager program.
more-help
is disabled on platforms without a working
fork(2)
function. The PAGER
environment variable is
used to select the program, defaulting to more. Both will exit
with a status code of 0.
certtool - GnuTLS certificate tool Usage: certtool [ -<flag> [<val>] | --<name>[{=| }<val>] ]... -d, --debug=num Enable debugging - it must be in the range: 0 to 9999 -V, --verbose More verbose output - may appear multiple times --infile=file Input file - file must pre-exist --outfile=str Output file -s, --generate-self-signed Generate a self-signed certificate -c, --generate-certificate Generate a signed certificate --generate-proxy Generates a proxy certificate --generate-crl Generate a CRL -u, --update-certificate Update a signed certificate -p, --generate-privkey Generate a private key -q, --generate-request Generate a PKCS #10 certificate request - prohibits the option 'infile' -e, --verify-chain Verify a PEM encoded certificate chain --verify Verify a PEM encoded certificate chain using a trusted list --verify-crl Verify a CRL using a trusted list - requires the option 'load-ca-certificate' --generate-dh-params Generate PKCS #3 encoded Diffie-Hellman parameters --get-dh-params Get the included PKCS #3 encoded Diffie-Hellman parameters --dh-info Print information PKCS #3 encoded Diffie-Hellman parameters --load-privkey=str Loads a private key file --load-pubkey=str Loads a public key file --load-request=str Loads a certificate request file --load-certificate=str Loads a certificate file --load-ca-privkey=str Loads the certificate authority's private key file --load-ca-certificate=str Loads the certificate authority's certificate file --password=str Password to use --null-password Enforce a NULL password --empty-password Enforce an empty password --hex-numbers Print big number in an easier format to parse --cprint In certain operations it prints the information in C-friendly format -i, --certificate-info Print information on the given certificate --certificate-pubkey Print certificate's public key --pgp-certificate-info Print information on the given OpenPGP certificate --pgp-ring-info Print information on the given OpenPGP keyring structure -l, --crl-info Print information on the given CRL structure --crq-info Print information on the given certificate request --no-crq-extensions Do not use extensions in certificate requests --p12-info Print information on a PKCS #12 structure --p12-name=str The PKCS #12 friendly name to use --p7-info Print information on a PKCS #7 structure --smime-to-p7 Convert S/MIME to PKCS #7 structure -k, --key-info Print information on a private key --pgp-key-info Print information on an OpenPGP private key --pubkey-info Print information on a public key --v1 Generate an X.509 version 1 certificate (with no extensions) -!, --to-p12 Generate a PKCS #12 structure - requires the option 'load-certificate' -", --to-p8 Generate a PKCS #8 structure -8, --pkcs8 Use PKCS #8 format for private keys -#, --rsa Generate RSA key -$, --dsa Generate DSA key -%, --ecc Generate ECC (ECDSA) key -&, --ecdsa an alias for the 'ecc' option -', --hash=str Hash algorithm to use for signing -(, --inder Use DER format for input certificates, private keys, and DH parameters - disabled as '--no-inder' -), --inraw an alias for the 'inder' option -*, --outder Use DER format for output certificates, private keys, and DH parameters - disabled as '--no-outder' -+, --outraw an alias for the 'outder' option -,, --bits=num Specify the number of bits for key generate --, --curve=str Specify the curve used for EC key generation -., --sec-param=str Specify the security level [low, legacy, medium, high, ultra] -/, --disable-quick-random No effect -0, --template=str Template file to use for non-interactive operation -1, --stdout-info Print information to stdout instead of stderr -2, --ask-pass Enable interaction for entering password when in batch mode. -3, --pkcs-cipher=str Cipher to use for PKCS #8 and #12 operations -4, --provider=str Specify the PKCS #11 provider library -v, --version[=arg] output version information and exit -h, --help display extended usage information and exit -!, --more-help extended usage information passed thru pager Options are specified by doubled hyphens and their name or by a single hyphen and the flag character. Tool to parse and generate X.509 certificates, requests and private keys. It can be used interactively or non interactively by specifying the template command line option. The tool accepts files or URLs supported by GnuTLS. In case PIN is required for the URL access you can provide it using the environment variables GNUTLS_PIN and GNUTLS_SO_PIN.
This is the “enable debugging” option. This option takes a number argument. Specifies the debug level.
This is the “generate a pkcs #10 certificate request” option.
This option has some usage constraints. It:
Will generate a PKCS #10 certificate request. To specify a private key use –load-privkey.
This is the “verify a pem encoded certificate chain” option. The last certificate in the chain must be a self signed one.
This is the “verify a pem encoded certificate chain using a trusted list” option. The trusted certificate list can be loaded with –load-ca-certificate. If no certificate list is provided, then the system's certificate list is used.
This is the “verify a crl using a trusted list” option.
This option has some usage constraints. It:
The trusted certificate list must be loaded with –load-ca-certificate.
This is the “get the included pkcs #3 encoded diffie-hellman parameters” option. Returns stored DH parameters in GnuTLS. Those parameters are used in the SRP protocol. The parameters returned by fresh generation are more efficient since GnuTLS 3.0.9.
This is the “loads a private key file” option. This option takes a string argument. This can be either a file or a PKCS #11 URL
This is the “loads a public key file” option. This option takes a string argument. This can be either a file or a PKCS #11 URL
This is the “loads a certificate file” option. This option takes a string argument. This can be either a file or a PKCS #11 URL
This is the “loads the certificate authority's private key file” option. This option takes a string argument. This can be either a file or a PKCS #11 URL
This is the “loads the certificate authority's certificate file” option. This option takes a string argument. This can be either a file or a PKCS #11 URL
This is the “password to use” option. This option takes a string argument. You can use this option to specify the password in the command line instead of reading it from the tty. Note, that the command line arguments are available for view in others in the system. Specifying password as ” is the same as specifying no password.
This is the “enforce a null password” option. This option enforces a NULL password. This is different than the empty or no password in schemas like PKCS #8.
This is the “enforce an empty password” option. This option enforces an empty password. This is different than the NULL or no password in schemas like PKCS #8.
This is the “in certain operations it prints the information in c-friendly format” option. In certain operations it prints the information in C-friendly format, suitable for including into C programs.
This is the “the pkcs #12 friendly name to use” option. This option takes a string argument. The name to be used for the primary certificate and private key in a PKCS #12 file.
This is the “print information on a public key” option. The option combined with –load-request, –load-pubkey, –load-privkey and –load-certificate will extract the public key of the object in question.
This is the “generate a pkcs #12 structure” option.
This option has some usage constraints. It:
It requires a certificate, a private key and possibly a CA certificate to be specified.
This is the “generate rsa key” option. When combined with –generate-privkey generates an RSA private key.
This is the “generate dsa key” option. When combined with –generate-privkey generates a DSA private key.
This is the “generate ecc (ecdsa) key” option. When combined with –generate-privkey generates an elliptic curve private key to be used with ECDSA.
This is an alias for the ecc
option,
see the ecc option documentation.
This is the “hash algorithm to use for signing” option. This option takes a string argument. Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512.
This is the “use der format for input certificates, private keys, and dh parameters ” option.
This option has some usage constraints. It:
The input files will be assumed to be in DER or RAW format. Unlike options that in PEM input would allow multiple input data (e.g. multiple certificates), when reading in DER format a single data structure is read.
This is an alias for the inder
option,
see the inder option documentation.
This is the “use der format for output certificates, private keys, and dh parameters” option.
This option has some usage constraints. It:
The output will be in DER or RAW format.
This is an alias for the outder
option,
see the outder option documentation.
This is the “specify the security level [low, legacy, medium, high, ultra]” option. This option takes a string argument Security parameter. This is alternative to the bits option.
This is the “enable interaction for entering password when in batch mode.” option. This option will enable interaction to enter password when in batch mode. That is useful when the template option has been specified.
This is the “cipher to use for pkcs #8 and #12 operations” option. This option takes a string argument Cipher. Cipher may be one of 3des, 3des-pkcs12, aes-128, aes-192, aes-256, rc2-40, arcfour.
This is the “specify the pkcs #11 provider library” option. This option takes a string argument. This will override the default options in /etc/gnutls/pkcs11.conf
One of the following exit values will be returned:
To create an RSA private key, run:
$ certtool --generate-privkey --outfile key.pem --rsa
To create a DSA or elliptic curves (ECDSA) private key use the above command combined with 'dsa' or 'ecc' options.
To create a certificate request (needed when the certificate is issued by another party), run:
certtool --generate-request --load-privkey key.pem \ --outfile request.pem
If the private key is stored in a smart card you can generate a request by specifying the private key object URL.
$ ./certtool --generate-request --load-privkey "pkcs11:..." \ --load-pubkey "pkcs11:..." --outfile request.pem
To create a self signed certificate, use the command:
$ certtool --generate-privkey --outfile ca-key.pem $ certtool --generate-self-signed --load-privkey ca-key.pem \ --outfile ca-cert.pem
Note that a self-signed certificate usually belongs to a certificate authority, that signs other certificates.
To generate a certificate using the previous request, use the command:
$ certtool --generate-certificate --load-request request.pem \ --outfile cert.pem --load-ca-certificate ca-cert.pem \ --load-ca-privkey ca-key.pem
To generate a certificate using the private key only, use the command:
$ certtool --generate-certificate --load-privkey key.pem \ --outfile cert.pem --load-ca-certificate ca-cert.pem \ --load-ca-privkey ca-key.pem
To view the certificate information, use:
$ certtool --certificate-info --infile cert.pem
To generate a PKCS #12 structure using the previous key and certificate, use the command:
$ certtool --load-certificate cert.pem --load-privkey key.pem \ --to-p12 --outder --outfile key.p12
Some tools (reportedly web browsers) have problems with that file because it does not contain the CA certificate for the certificate. To work around that problem in the tool, you can use the –load-ca-certificate parameter as follows:
$ certtool --load-ca-certificate ca.pem \ --load-certificate cert.pem --load-privkey key.pem \ --to-p12 --outder --outfile key.p12
To generate parameters for Diffie-Hellman key exchange, use the command:
$ certtool --generate-dh-params --outfile dh.pem --sec-param medium
Proxy certificate can be used to delegate your credential to a temporary, typically short-lived, certificate. To create one from the previously created certificate, first create a temporary key and then generate a proxy certificate for it, using the commands:
$ certtool --generate-privkey > proxy-key.pem $ certtool --generate-proxy --load-ca-privkey key.pem \ --load-privkey proxy-key.pem --load-certificate cert.pem \ --outfile proxy-cert.pem
To create an empty Certificate Revocation List (CRL) do:
$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \ --load-ca-certificate x509-ca.pem
To create a CRL that contains some revoked certificates, place the
certificates in a file and use --load-certificate
as follows:
$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \ --load-ca-certificate x509-ca.pem --load-certificate revoked-certs.pem
To verify a Certificate Revocation List (CRL) do:
$ certtool --verify-crl --load-ca-certificate x509-ca.pem < crl.pem
A template file can be used to avoid the interactive questions of certtool. Initially create a file named 'cert.cfg' that contains the information about the certificate. The template can be used as below:
$ certtool --generate-certificate --load-privkey key.pem \ --template cert.cfg --outfile cert.pem \ --load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem
An example certtool template file that can be used to generate a certificate request or a self signed certificate follows.
# X.509 Certificate options # # DN options # The organization of the subject. organization = "Koko inc." # The organizational unit of the subject. unit = "sleeping dept." # The locality of the subject. # locality = # The state of the certificate owner. state = "Attiki" # The country of the subject. Two letter code. country = GR # The common name of the certificate owner. cn = "Cindy Lauper" # A user id of the certificate owner. #uid = "clauper" # Set domain components #dc = "name" #dc = "domain" # If the supported DN OIDs are not adequate you can set # any OID here. # For example set the X.520 Title and the X.520 Pseudonym # by using OID and string pairs. #dn_oid = 2.5.4.12 Dr. #dn_oid = 2.5.4.65 jackal # This is deprecated and should not be used in new # certificates. # pkcs9_email = "none@none.org" # An alternative way to set the certificate's distinguished name directly # is with the "dn" option. The attribute names allowed are: # C (country), street, O (organization), OU (unit), title, CN (common name), # L (locality), ST (state), placeOfBirth, gender, countryOfCitizenship, # countryOfResidence, serialNumber, telephoneNumber, surName, initials, # generationQualifier, givenName, pseudonym, dnQualifier, postalCode, name, # businessCategory, DC, UID, jurisdictionOfIncorporationLocalityName, # jurisdictionOfIncorporationStateOrProvinceName, # jurisdictionOfIncorporationCountryName, XmppAddr, and numeric OIDs. #dn = "cn=Nik,st=Attiki,C=GR,surName=Mavrogiannopoulos,2.5.4.9=Arkadias" # The serial number of the certificate # Comment the field for a time-based serial number. serial = 007 # In how many days, counting from today, this certificate will expire. # Use -1 if there is no expiration date. expiration_days = 700 # Alternatively you may set concrete dates and time. The GNU date string # formats are accepted. See: # http://www.gnu.org/software/tar/manual/html_node/Date-input-formats.html #activation_date = "2004-02-29 16:21:42" #expiration_date = "2025-02-29 16:24:41" # X.509 v3 extensions # A dnsname in case of a WWW server. #dns_name = "www.none.org" #dns_name = "www.morethanone.org" # A subject alternative name URI #uri = "http://www.example.com" # An IP address in case of a server. #ip_address = "192.168.1.1" # An email in case of a person email = "none@none.org" # Challenge password used in certificate requests challenge_password = 123456 # Password when encrypting a private key #password = secret # An URL that has CRLs (certificate revocation lists) # available. Needed in CA certificates. #crl_dist_points = "http://www.getcrl.crl/getcrl/" # Whether this is a CA certificate or not #ca # for microsoft smart card logon # key_purpose_oid = 1.3.6.1.4.1.311.20.2.2 ### Other predefined key purpose OIDs # Whether this certificate will be used for a TLS client #tls_www_client # Whether this certificate will be used for a TLS server #tls_www_server # Whether this certificate will be used to sign data (needed # in TLS DHE ciphersuites). signing_key # Whether this certificate will be used to encrypt data (needed # in TLS RSA ciphersuites). Note that it is preferred to use different # keys for encryption and signing. encryption_key # Whether this key will be used to sign other certificates. #cert_signing_key # Whether this key will be used to sign CRLs. #crl_signing_key # Whether this key will be used to sign code. #code_signing_key # Whether this key will be used to sign OCSP data. #ocsp_signing_key # Whether this key will be used for time stamping. #time_stamping_key # Whether this key will be used for IPsec IKE operations. #ipsec_ike_key ### end of key purpose OIDs # When generating a certificate from a certificate # request, then honor the extensions stored in the request # and store them in the real certificate. #honor_crq_extensions # Path length contraint. Sets the maximum number of # certificates that can be used to certify this certificate. # (i.e. the certificate chain length) #path_len = -1 #path_len = 2 # OCSP URI # ocsp_uri = http://my.ocsp.server/ocsp # CA issuers URI # ca_issuers_uri = http://my.ca.issuer # Certificate policies #policy1 = 1.3.6.1.4.1.5484.1.10.99.1.0 #policy1_txt = "This is a long policy to summarize" #policy1_url = http://www.example.com/a-policy-to-read #policy2 = 1.3.6.1.4.1.5484.1.10.99.1.1 #policy2_txt = "This is a short policy" #policy2_url = http://www.example.com/another-policy-to-read # Name constraints # DNS #nc_permit_dns = example.com #nc_exclude_dns = test.example.com # EMAIL #nc_permit_email = "nmav@ex.net" # Exclude subdomains of example.com #nc_exclude_email = .example.com # Exclude all e-mail addresses of example.com #nc_exclude_email = example.com # Options for proxy certificates #proxy_policy_language = 1.3.6.1.5.5.7.21.1 # Options for generating a CRL # The number of days the next CRL update will be due. # next CRL update will be in 43 days #crl_next_update = 43 # this is the 5th CRL by this CA # Comment the field for a time-based number. #crl_number = 5
Ocsptool is a program that can parse and print information about OCSP requests/responses, generate requests and verify responses.
This section was generated by AutoGen,
using the agtexi-cmd
template and the option descriptions for the ocsptool
program.
This software is released under the GNU General Public License, version 3 or later.
This is the automatically generated usage text for ocsptool.
The text printed is the same whether selected with the help
option
(--help) or the more-help
option (--more-help). more-help
will print
the usage text by passing it through a pager program.
more-help
is disabled on platforms without a working
fork(2)
function. The PAGER
environment variable is
used to select the program, defaulting to more. Both will exit
with a status code of 0.
ocsptool - GnuTLS OCSP tool Usage: ocsptool [ -<flag> [<val>] | --<name>[{=| }<val>] ]... -d, --debug=num Enable debugging - it must be in the range: 0 to 9999 -V, --verbose More verbose output - may appear multiple times --infile=file Input file - file must pre-exist --outfile=str Output file --ask[=arg] Ask an OCSP/HTTP server on a certificate validity - requires these options: load-cert load-issuer -e, --verify-response Verify response -i, --request-info Print information on a OCSP request -j, --response-info Print information on a OCSP response -q, --generate-request Generate an OCSP request --nonce Use (or not) a nonce to OCSP request - disabled as '--no-nonce' --load-issuer=file Read issuer certificate from file - file must pre-exist --load-cert=file Read certificate to check from file - file must pre-exist --load-trust=file Read OCSP trust anchors from file - prohibits the option 'load-signer' - file must pre-exist --load-signer=file Read OCSP response signer from file - prohibits the option 'load-trust' - file must pre-exist --inder Use DER format for input certificates and private keys - disabled as '--no-inder' -Q, --load-request=file Read DER encoded OCSP request from file - file must pre-exist -S, --load-response=file Read DER encoded OCSP response from file - file must pre-exist -v, --version[=arg] output version information and exit -h, --help display extended usage information and exit -!, --more-help extended usage information passed thru pager Options are specified by doubled hyphens and their name or by a single hyphen and the flag character. Ocsptool is a program that can parse and print information about OCSP requests/responses, generate requests and verify responses.
This is the “enable debugging” option. This option takes a number argument. Specifies the debug level.
This is the “ask an ocsp/http server on a certificate validity” option. This option takes an optional string argument server name|url.
This option has some usage constraints. It:
Connects to the specified HTTP OCSP server and queries on the validity of the loaded certificate.
One of the following exit values will be returned:
To parse an OCSP request and print information about the content, the
-i
or --request-info
parameter may be used as follows.
The -Q
parameter specify the name of the file containing the
OCSP request, and it should contain the OCSP request in binary DER
format.
$ ocsptool -i -Q ocsp-request.der
The input file may also be sent to standard input like this:
$ cat ocsp-request.der | ocsptool --request-info
Similar to parsing OCSP requests, OCSP responses can be parsed using
the -j
or --response-info
as follows.
$ ocsptool -j -Q ocsp-response.der $ cat ocsp-response.der | ocsptool --response-info
The -q
or --generate-request
parameters are used to
generate an OCSP request. By default the OCSP request is written to
standard output in binary DER format, but can be stored in a file
using --outfile
. To generate an OCSP request the issuer of the
certificate to check needs to be specified with --load-issuer
and the certificate to check with --load-cert
. By default PEM
format is used for these files, although --inder
can be used to
specify that the input files are in DER format.
$ ocsptool -q --load-issuer issuer.pem --load-cert client.pem \ --outfile ocsp-request.der
When generating OCSP requests, the tool will add an OCSP extension
containing a nonce. This behaviour can be disabled by specifying
--no-nonce
.
To verify the signature in an OCSP response the -e
or
--verify-response
parameter is used. The tool will read an
OCSP response in DER format from standard input, or from the file
specified by --load-response
. The OCSP response is verified
against a set of trust anchors, which are specified using
--load-trust
. The trust anchors are concatenated certificates
in PEM format. The certificate that signed the OCSP response needs to
be in the set of trust anchors, or the issuer of the signer
certificate needs to be in the set of trust anchors and the OCSP
Extended Key Usage bit has to be asserted in the signer certificate.
$ ocsptool -e --load-trust issuer.pem \ --load-response ocsp-response.der
The tool will print status of verification.
It is possible to override the normal trust logic if you know that a
certain certificate is supposed to have signed the OCSP response, and
you want to use it to check the signature. This is achieved using
--load-signer
instead of --load-trust
. This will load
one certificate and it will be used to verify the signature in the
OCSP response. It will not check the Extended Key Usage bit.
$ ocsptool -e --load-signer ocsp-signer.pem \ --load-response ocsp-response.der
This approach is normally only relevant in two situations. The first
is when the OCSP response does not contain a copy of the signer
certificate, so the --load-trust
code would fail. The second
is if you want to avoid the indirect mode where the OCSP response
signer certificate is signed by a trust anchor.
Here is an example of how to generate an OCSP request for a
certificate and to verify the response. For illustration we'll use
the blog.josefsson.org
host, which (as of writing) uses a
certificate from CACert. First we'll use gnutls-cli
to get a
copy of the server certificate chain. The server is not required to
send this information, but this particular one is configured to do so.
$ echo | gnutls-cli -p 443 blog.josefsson.org --print-cert > chain.pem
Use a text editor on chain.pem
to create three files for each
separate certificates, called cert.pem
for the first
certificate for the domain itself, secondly issuer.pem
for the
intermediate certificate and root.pem
for the final root
certificate.
The domain certificate normally contains a pointer to where the OCSP
responder is located, in the Authority Information Access Information
extension. For example, from certtool -i < cert.pem
there is
this information:
Authority Information Access Information (not critical): Access Method: 1.3.6.1.5.5.7.48.1 (id-ad-ocsp) Access Location URI: http://ocsp.CAcert.org/
This means the CA support OCSP queries over HTTP. We are now ready to create a OCSP request for the certificate.
$ ocsptool --ask ocsp.CAcert.org --load-issuer issuer.pem \ --load-cert cert.pem --outfile ocsp-response.der
The request is sent via HTTP to the OCSP server address specified. If the address is ommited ocsptool will use the address stored in the certificate.
Tool to generate and check DNS resource records for the DANE protocol.
This section was generated by AutoGen,
using the agtexi-cmd
template and the option descriptions for the danetool
program.
This software is released under the GNU General Public License, version 3 or later.
This is the automatically generated usage text for danetool.
The text printed is the same whether selected with the help
option
(--help) or the more-help
option (--more-help). more-help
will print
the usage text by passing it through a pager program.
more-help
is disabled on platforms without a working
fork(2)
function. The PAGER
environment variable is
used to select the program, defaulting to more. Both will exit
with a status code of 0.
danetool is unavailable - no --help
This is the “enable debugging” option. This option takes a number argument. Specifies the debug level.
This is the “loads a public key file” option. This option takes a string argument. This can be either a file or a PKCS #11 URL
This is the “loads a certificate file” option. This option takes a string argument. This can be either a file or a PKCS #11 URL
This is the “sets a dlv file” option. This option takes a string argument. This sets a DLV file to be used for DNSSEC verification.
This is the “hash algorithm to use for signing” option. This option takes a string argument. Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512.
This is the “check a host's dane tlsa entry” option. This option takes a string argument. Obtains the DANE TLSA entry from the given hostname and prints information. Note that the actual certificate of the host can be provided using –load-certificate, otherwise danetool will connect to the server to obtain it. The exit code on verification success will be zero.
This is the “check only the end-entity's certificate” option. Checks the end-entity's certificate only. Trust anchors or CAs are not considered.
This is the “check only the ca's certificate” option. Checks the trust anchor's and CA's certificate only. End-entities are not considered.
This is the “print the dane rr data on a certificate or public key” option.
This option has some usage constraints. It:
This command prints the DANE RR data needed to enable DANE on a DNS server.
This is the “specify the hostname to be used in the dane rr” option. This option takes a string argument Hostname. This command sets the hostname for the DANE RR.
This is the “the protocol set for dane data (tcp, udp etc.)” option. This option takes a string argument Protocol. This command specifies the protocol for the service set in the DANE data.
This is the “the application protocol to be used to obtain the server's certificate (https, smtp, imap)” option. This option takes a string argument. When the server's certificate isn't provided danetool will connect to the server to obtain the certificate. In that case it is required to known the protocol to talk with the server prior to initiating the TLS handshake.
This is the “whether the provided certificate or public key is a certificate authority” option. Marks the DANE RR as a CA certificate if specified.
This is the “use the hash of the x.509 certificate, rather than the public key” option. This option forces the generated record to contain the hash of the full X.509 certificate. By default only the hash of the public key is used.
This is an alias for the domain
option,
see the domain option documentation.
This is the “the provided certificate or public key is issued by the local domain” option.
This option has some usage constraints. It:
DANE distinguishes certificates and public keys offered via the DNSSEC to trusted and local entities. This flag indicates that this is a domain-issued certificate, meaning that there could be no CA involved.
This is the “use the local dns server for dnssec resolving” option.
This option has some usage constraints. It:
This option will use the local DNS server for DNSSEC. This is disabled by default due to many servers not allowing DNSSEC.
This is the “do not verify any dnssec signature” option. Ignores any DNSSEC signature verification results.
This is the “use der format for input certificates and private keys” option.
This option has some usage constraints. It:
The input files will be assumed to be in DER or RAW format. Unlike options that in PEM input would allow multiple input data (e.g. multiple certificates), when reading in DER format a single data structure is read.
This is an alias for the inder
option,
see the inder option documentation.
This is the “print the received dane data in raw format” option.
This option has some usage constraints. It:
This option will print the received DANE data.
This is the “suppress several informational messages” option. In that case on the exit code can be used as an indication of verification success
One of the following exit values will be returned:
To create a DANE TLSA resource record for a certificate (or public key) that was issued localy and may or may not be signed by a CA use the following command.
$ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem
To create a DANE TLSA resource record for a CA signed certificate, which will be marked as such use the following command.
$ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem \ --no-domain
The former is useful to add in your DNS entry even if your certificate is signed by a CA. That way even users who do not trust your CA will be able to verify your certificate using DANE.
In order to create a record for the CA signer of your certificate use the following.
$ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem \ --ca --no-domain
To read a server's DANE TLSA entry, use:
$ danetool --check www.example.com --proto tcp --port 443
To verify a server's DANE TLSA entry, use:
$ danetool --check www.example.com --proto tcp --port 443 --load-certificate chain.pem
In addition to certificate authentication, the TLS protocol may be used with password, shared-key and anonymous authentication methods. The rest of this chapter discusses details of these methods.
GnuTLS supports authentication via the Secure Remote Password or SRP protocol (see [RFC2945,TOMSRP] for a description). The SRP key exchange is an extension to the TLS protocol, and it provides an authenticated with a password key exchange. The peers can be identified using a single password, or there can be combinations where the client is authenticated using SRP and the server using a certificate.
The advantage of SRP authentication, over other proposed secure password authentication schemes, is that SRP is not susceptible to off-line dictionary attacks. Moreover, SRP does not require the server to hold the user's password. This kind of protection is similar to the one used traditionally in the UNIX /etc/passwd file, where the contents of this file did not cause harm to the system security if they were revealed. The SRP needs instead of the plain password something called a verifier, which is calculated using the user's password, and if stolen cannot be used to impersonate the user.
Typical conventions in SRP are a password file, called tpasswd that holds the SRP verifiers (encoded passwords) and another file, tpasswd.conf, which holds the allowed SRP parameters. The included in GnuTLS helper follow those conventions. The srptool program, discussed in the next section is a tool to manipulate the SRP parameters.
The implementation in GnuTLS is based on [TLSSRP]. The supported key exchange methods are shown below.
SRP:
SRP_DSS:
SRP_RSA:
username: is the user's name
password: is the user's password
salt: should be some randomly generated bytes
generator: is the generator of the group
prime: is the group's prime
res: where the verifier will be stored.
This function will create an SRP verifier, as specified in RFC2945. The
prime
andgenerator
should be one of the static parameters defined in gnutls/gnutls.h or may be generated.The verifier will be allocated with
gnutls_malloc
() and will be stored inres
using binary format.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, or an error code.
gnutls_srp_base64_encode_alloc (const gnutls_datum_t *
data, gnutls_datum_t *
result)
gnutls_srp_base64_decode_alloc (const gnutls_datum_t *
b64_data, gnutls_datum_t *
result)
Simple program that emulates the programs in the Stanford SRP (Secure Remote Password) libraries using GnuTLS. It is intended for use in places where you don't expect SRP authentication to be the used for system users.
In brief, to use SRP you need to create two files. These are the password file that holds the users and the verifiers associated with them and the configuration file to hold the group parameters (called tpasswd.conf).
This section was generated by AutoGen,
using the agtexi-cmd
template and the option descriptions for the srptool
program.
This software is released under the GNU General Public License, version 3 or later.
This is the automatically generated usage text for srptool.
The text printed is the same whether selected with the help
option
(--help) or the more-help
option (--more-help). more-help
will print
the usage text by passing it through a pager program.
more-help
is disabled on platforms without a working
fork(2)
function. The PAGER
environment variable is
used to select the program, defaulting to more. Both will exit
with a status code of 0.
srptool - GnuTLS SRP tool Usage: srptool [ -<flag> [<val>] | --<name>[{=| }<val>] ]... -d, --debug=num Enable debugging - it must be in the range: 0 to 9999 -i, --index=num specify the index of the group parameters in tpasswd.conf to use -u, --username=str specify a username -p, --passwd=str specify a password file -s, --salt=num specify salt size --verify just verify the password. -v, --passwd-conf=str specify a password conf file. --create-conf=str Generate a password configuration file. -v, --version[=arg] output version information and exit -h, --help display extended usage information and exit -!, --more-help extended usage information passed thru pager Options are specified by doubled hyphens and their name or by a single hyphen and the flag character. Simple program that emulates the programs in the Stanford SRP (Secure Remote Password) libraries using GnuTLS. It is intended for use in places where you don't expect SRP authentication to be the used for system users. In brief, to use SRP you need to create two files. These are the password file that holds the users and the verifiers associated with them and the configuration file to hold the group parameters (called tpasswd.conf).
This is the “enable debugging” option. This option takes a number argument. Specifies the debug level.
This is the “just verify the password.” option. Verifies the password provided against the password file.
This is the “specify a password conf file.” option. This option takes a string argument. Specify a filename or a PKCS #11 URL to read the CAs from.
This is the “generate a password configuration file.” option. This option takes a string argument. This generates a password configuration file (tpasswd.conf) containing the required for TLS parameters.
One of the following exit values will be returned:
gnutls-cli-debug (1), gnutls-serv (1), srptool (1), psktool (1), certtool (1)
To create tpasswd.conf which holds the g and n values for SRP protocol (generator and a large prime), run:
$ srptool --create-conf /etc/tpasswd.conf
This command will create /etc/tpasswd and will add user 'test' (you will also be prompted for a password). Verifiers are stored by default in the way libsrp expects.
$ srptool --passwd /etc/tpasswd --passwd-conf /etc/tpasswd.conf -u test
This command will check against a password. If the password matches the one in /etc/tpasswd you will get an ok.
$ srptool --passwd /etc/tpasswd --passwd\-conf /etc/tpasswd.conf --verify -u test
Authentication using Pre-shared keys is a method to authenticate using usernames and binary keys. This protocol avoids making use of public key infrastructure and expensive calculations, thus it is suitable for constraint clients.
The implementation in GnuTLS is based on [TLSPSK]. The supported PSK key exchange methods are:
PSK:
DHE-PSK:
ECDHE-PSK:
RSA-PSK:
Helper functions to generate and maintain PSK keys are also included in GnuTLS.
gnutls_key_generate (gnutls_datum_t *
key, unsigned int
key_size)
gnutls_hex_encode (const gnutls_datum_t *
data, char *
result, size_t *
result_size)
gnutls_hex_decode (const gnutls_datum_t *
hex_data, void *
result, size_t *
result_size)
Program that generates random keys for use with TLS-PSK. The keys are stored in hexadecimal format in a key file.
This section was generated by AutoGen,
using the agtexi-cmd
template and the option descriptions for the psktool
program.
This software is released under the GNU General Public License, version 3 or later.
This is the automatically generated usage text for psktool.
The text printed is the same whether selected with the help
option
(--help) or the more-help
option (--more-help). more-help
will print
the usage text by passing it through a pager program.
more-help
is disabled on platforms without a working
fork(2)
function. The PAGER
environment variable is
used to select the program, defaulting to more. Both will exit
with a status code of 0.
psktool - GnuTLS PSK tool Usage: psktool [ -<flag> [<val>] | --<name>[{=| }<val>] ]... -d, --debug=num Enable debugging - it must be in the range: 0 to 9999 -s, --keysize=num specify the key size in bytes - it must be in the range: 0 to 512 -u, --username=str specify a username -p, --passwd=str specify a password file -v, --version[=arg] output version information and exit -h, --help display extended usage information and exit -!, --more-help extended usage information passed thru pager Options are specified by doubled hyphens and their name or by a single hyphen and the flag character. Program that generates random keys for use with TLS-PSK. The keys are stored in hexadecimal format in a key file.
This is the “enable debugging” option. This option takes a number argument. Specifies the debug level.
One of the following exit values will be returned:
gnutls-cli-debug (1), gnutls-serv (1), srptool (1), certtool (1)
To add a user 'psk_identity' in passwd.psk for use with GnuTLS run:
$ ./psktool -u psk_identity -p passwd.psk Generating a random key for user 'psk_identity' Key stored to passwd.psk $ cat psks.txt psk_identity:88f3824b3e5659f52d00e959bacab954b6540344 $
This command will create passwd.psk if it does not exist and will add user 'psk_identity' (you will also be prompted for a password).
The anonymous key exchange offers encryption without any indication of the peer's identity. This kind of authentication is vulnerable to a man in the middle attack, but can be used even if there is no prior communication or shared trusted parties with the peer. It is useful to establish a session over which certificate authentication will occur in order to hide the indentities of the participants from passive eavesdroppers.
Unless in the above case, it is not recommended to use anonymous authentication. In the cases where there is no prior communication with the peers, an alternative with better properties, such as key continuity, is trust on first use (see Verifying a certificate using trust on first use authentication).
The available key exchange algorithms for anonymous authentication are shown below, but note that few public servers support them, and they have to be explicitly enabled.
ANON_DH:
ANON_ECDH:
This section provides some guidance on how to use the available authentication methods in GnuTLS in various scenarios.
Let's consider two peers need to communicate over an untrusted channel (the Internet), but have an out-of-band channel available. The latter channel is considered safe from eavesdropping and message modification and thus can be used for an initial bootstrapping of the protocol. The options available are:
Provided that the out-of-band channel is trusted all of the above provide a similar level of protection. An out-of-band channel may be the initial bootstrapping of a user's PC in a corporate environment, in-person communication, communication over an alternative network (e.g. the phone network), etc.
When an out-of-band channel is not available a peer cannot be reliably authenticated. What can be done, however, is to allow some form of registration of users connecting for the first time and ensure that their keys remain the same after that initial connection. This is termed key continuity or trust on first use (TOFU).
The available option is to use public key authentication (see Certificate authentication). The client and the server store each other's public keys (or fingerprints of them) and associate them with their identity. On future sessions over the untrusted channel they verify the keys being the same (see Verifying a certificate using trust on first use authentication).
To mitigate the uncertainty of the information exchanged in the first connection other channels over the Internet may be used, e.g., DNSSEC (see Verifying a certificate using DANE).
When a trusted third party is available (or a certificate authority) the most suitable option is to use certificate authentication (see Certificate authentication). The client and the server obtain certificates that associate their identity and public keys using a digital signature by the trusted party and use them to on the subsequent communications with each other. Each party verifies the peer's certificate using the trusted third party's signature. The parameters of the third party's signature are present in its certificate which must be available to all communicating parties.
While the above is the typical authentication method for servers in the Internet by using the commercial CAs, the users that act as clients in the protocol rarely possess such certificates. In that case a hybrid method can be used where the server is authenticated by the client using the commercial CAs and the client is authenticated based on some information the client provided over the initial server-authenticated channel. The available options are:
In several cases storing the long term cryptographic keys in a hard disk or even in memory poses a significant risk. Once the system they are stored is compromised the keys must be replaced as the secrecy of future sessions is no longer guarranteed. Moreover, past sessions that were not protected by a perfect forward secrecy offering ciphersuite are also to be assumed compromised.
If such threats need to be addressed, then it may be wise storing the keys in a security module such as a smart card, an HSM or the TPM chip. Those modules ensure the protection of the cryptographic keys by only allowing operations on them and preventing their extraction. The purpose of the abstract key API is to provide an API that will allow the handle of keys in memory and files, as well as keys stored in such modules.
In GnuTLS the approach is to handle all keys transparently by the high level API, e.g., the API that loads a key or certificate from a file. The high-level API will accept URIs in addition to files that specify keys on an HSM or in TPM, and a callback function will be used to obtain any required keys. The URI format is defined in [TPMURI] and [PKCS11URI], and is in the process of being standardized across systems.
More information on the API is provided in the next sections. Examples of a URI of a certificate
stored in an HSM, as well as a key stored in the TPM chip are shown below. To discover the URIs
of the objects the p11tool
(see p11tool Invocation),
or tpmtool
(see tpmtool Invocation) may be used.
pkcs11:token=Nikos;serial=307521161601031;model=PKCS%2315; \ manufacturer=EnterSafe;object=test1;objecttype=cert tpmkey:uuid=42309df8-d101-11e1-a89a-97bb33c23ad1;storage=user
Since there are many forms of a public or private keys supported by GnuTLS such as
X.509, OpenPGP, PKCS #11 or TPM it is desirable to allow common operations
on them. For these reasons the abstract gnutls_privkey_t
and gnutls_pubkey_t
were
introduced in gnutls/abstract.h
header. Those types are initialized using a specific type of
key and then can be used to perform operations in an abstract way. For example in order
to sign an X.509 certificate with a key that resides in a token the following steps can be
used.
#inlude <gnutls/abstract.h> void sign_cert( gnutls_x509_crt_t to_be_signed) { gnutls_x509_crt_t ca_cert; gnutls_privkey_t abs_key; /* initialize the abstract key */ gnutls_privkey_init(&abs_key); /* keys stored in tokens are identified by URLs */ gnutls_privkey_import_url(abs_key, key_url); gnutls_x509_crt_init(&ca_cert); gnutls_x509_crt_import_pkcs11_url(&ca_cert, cert_url); /* sign the certificate to be signed */ gnutls_x509_crt_privkey_sign(to_be_signed, ca_cert, abs_key, GNUTLS_DIG_SHA256, 0); }
An abstract gnutls_pubkey_t
can be initialized
using the functions below. It can be imported through
an existing structure like gnutls_x509_crt_t
,
or through an ASN.1 encoding of the X.509 SubjectPublicKeyInfo
sequence.
gnutls_pubkey_import_x509 (gnutls_pubkey_t
key, gnutls_x509_crt_t
crt, unsigned int
flags)
gnutls_pubkey_import_openpgp (gnutls_pubkey_t
key, gnutls_openpgp_crt_t
crt, unsigned int
flags)
gnutls_pubkey_import_pkcs11 (gnutls_pubkey_t
key, gnutls_pkcs11_obj_t
obj, unsigned int
flags)
gnutls_pubkey_import_url (gnutls_pubkey_t
key, const char *
url, unsigned int
flags)
gnutls_pubkey_import_privkey (gnutls_pubkey_t
key, gnutls_privkey_t
pkey, unsigned int
usage, unsigned int
flags)
gnutls_pubkey_import (gnutls_pubkey_t
key, const gnutls_datum_t *
data, gnutls_x509_crt_fmt_t
format)
gnutls_pubkey_export (gnutls_pubkey_t
key, gnutls_x509_crt_fmt_t
format, void *
output_data, size_t *
output_data_size)
key: Holds the certificate
format: the format of output params. One of PEM or DER.
out: will contain a certificate PEM or DER encoded
This function will export the public key to DER or PEM format. The contents of the exported data is the SubjectPublicKeyInfo X.509 structure.
The output buffer will be allocated using
gnutls_malloc()
.If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".
Returns: In case of failure a negative error code will be returned, and 0 on success.
Since: 3.1.3
Other helper functions that allow directly importing from raw X.509 or OpenPGP structures are shown below.
gnutls_pubkey_import_x509_raw (gnutls_pubkey_t
pkey, const gnutls_datum_t *
data, gnutls_x509_crt_fmt_t
format, unsigned int
flags)
gnutls_pubkey_import_openpgp_raw (gnutls_pubkey_t
pkey, const gnutls_datum_t *
data, gnutls_openpgp_crt_fmt_t
format, const gnutls_openpgp_keyid_t
keyid, unsigned int
flags)
An important function is gnutls_pubkey_import_url which will import public keys from URLs that identify objects stored in tokens (see Smart cards and HSMs and Trusted Platform Module). A function to check for a supported by GnuTLS URL is gnutls_url_is_supported.
url: A PKCS 11 url
Check whether url is supported. Depending on the system libraries GnuTLS may support pkcs11 or tpmkey URLs.
Returns: return non-zero if the given URL is supported, and zero if it is not known.
Since: 3.1.0
Additional functions are available that will return information over a public key, such as a unique key ID, as well as a function that given a public key fingerprint would provide a memorable sketch.
Note that gnutls_pubkey_get_key_id calculates a SHA1 digest of the public key as a DER-formatted, subjectPublicKeyInfo object. Other implementations use different approaches, e.g., some use the “common method” described in section 4.2.1.2 of [RFC5280] which calculates a digest on a part of the subjectPublicKeyInfo object.
gnutls_pubkey_get_pk_algorithm (gnutls_pubkey_t
key, unsigned int *
bits)
gnutls_pubkey_get_preferred_hash_algorithm (gnutls_pubkey_t
key, gnutls_digest_algorithm_t *
hash, unsigned int *
mand)
gnutls_pubkey_get_key_id (gnutls_pubkey_t
key, unsigned int
flags, unsigned char *
output_data, size_t *
output_data_size)
gnutls_random_art (gnutls_random_art_t
type, const char *
key_type, unsigned int
key_size, void *
fpr, size_t
fpr_size, gnutls_datum_t *
art)
To export the key-specific parameters, or obtain a unique key ID the following functions are provided.
gnutls_pubkey_export_rsa_raw (gnutls_pubkey_t
key, gnutls_datum_t *
m, gnutls_datum_t *
e)
gnutls_pubkey_export_dsa_raw (gnutls_pubkey_t
key, gnutls_datum_t *
p, gnutls_datum_t *
q, gnutls_datum_t *
g, gnutls_datum_t *
y)
gnutls_pubkey_export_ecc_raw (gnutls_pubkey_t
key, gnutls_ecc_curve_t *
curve, gnutls_datum_t *
x, gnutls_datum_t *
y)
gnutls_pubkey_export_ecc_x962 (gnutls_pubkey_t
key, gnutls_datum_t *
parameters, gnutls_datum_t *
ecpoint)
An abstract gnutls_privkey_t
can be initialized
using the functions below. It can be imported through
an existing structure like gnutls_x509_privkey_t
,
but unlike public keys it cannot be exported. That is
to allow abstraction over keys stored in hardware that
makes available only operations.
gnutls_privkey_import_x509 (gnutls_privkey_t
pkey, gnutls_x509_privkey_t
key, unsigned int
flags)
gnutls_privkey_import_openpgp (gnutls_privkey_t
pkey, gnutls_openpgp_privkey_t
key, unsigned int
flags)
gnutls_privkey_import_pkcs11 (gnutls_privkey_t
pkey, gnutls_pkcs11_privkey_t
key, unsigned int
flags)
Other helper functions that allow directly importing from raw X.509 or OpenPGP structures are shown below. Again, as with public keys, private keys can be imported from a hardware module using URLs.
gnutls_privkey_import_x509_raw (gnutls_privkey_t
pkey, const gnutls_datum_t *
data, gnutls_x509_crt_fmt_t
format, const char *
password, unsigned int
flags)
gnutls_privkey_import_openpgp_raw (gnutls_privkey_t
pkey, const gnutls_datum_t *
data, gnutls_openpgp_crt_fmt_t
format, const gnutls_openpgp_keyid_t
keyid, const char *
password)
key: A key of type
gnutls_privkey_t
url: A PKCS 11 url
flags: should be zero
This function will import a PKCS11 or TPM URL as a private key. The supported URL types can be checked using
gnutls_url_is_supported()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
gnutls_privkey_get_pk_algorithm (gnutls_privkey_t
key, unsigned int *
bits)
gnutls_privkey_get_type (gnutls_privkey_t
key)
gnutls_privkey_status (gnutls_privkey_t
key)
In order to support cryptographic operations using an external API, the following function is provided. This allows for a simple extensibility API without resorting to PKCS #11.
pkey: The private key
pk: The public key algorithm
userdata: private data to be provided to the callbacks
sign_func: callback for signature operations
decrypt_func: callback for decryption operations
deinit_func: a deinitialization function
flags: Flags for the import
This function will associate the given callbacks with the
gnutls_privkey_t
structure. At least one of the two callbacks must be non-null. If a deinitialization function is provided then flags is assumed to containGNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE
.Note that the signing function is supposed to "raw" sign data, i.e., without any hashing or preprocessing. In case of RSA the DigestInfo will be provided, and the signing function is expected to do the PKCS
1
1.5 padding and the exponentiation.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1
The abstract key types can be used to access signing and signature verification operations with the underlying keys.
pubkey: Holds the public key
algo: The signature algorithm used
flags: Zero or one of
gnutls_pubkey_flags_t
data: holds the signed data
signature: contains the signature
This function will verify the given signed data, using the parameters from the certificate.
Returns: In case of a verification failure
GNUTLS_E_PK_SIG_VERIFY_FAILED
is returned, and zero or positive code on success.Since: 3.0
key: Holds the public key
algo: The signature algorithm used
flags: Zero or one of
gnutls_pubkey_flags_t
hash: holds the hash digest to be verified
signature: contains the signature
This function will verify the given signed digest, using the parameters from the public key. Note that unlike
gnutls_privkey_sign_hash()
, this function accepts a signature algorithm instead of a digest algorithm. You can usegnutls_pk_to_sign()
to get the appropriate value.Returns: In case of a verification failure
GNUTLS_E_PK_SIG_VERIFY_FAILED
is returned, and zero or positive code on success.Since: 3.0
key: Holds the public key
flags: should be 0 for now
plaintext: The data to be encrypted
ciphertext: contains the encrypted data
This function will encrypt the given data, using the public key.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
signer: Holds the key
hash: should be a digest algorithm
flags: Zero or one of
gnutls_privkey_flags_t
data: holds the data to be signed
signature: will contain the signature allocate with
gnutls_malloc()
This function will sign the given data using a signature algorithm supported by the private key. Signature algorithms are always used together with a hash functions. Different hash functions may be used for the RSA algorithm, but only the SHA family for the DSA keys.
You may use
gnutls_pubkey_get_preferred_hash_algorithm()
to determine the hash algorithm.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
signer: Holds the signer's key
hash_algo: The hash algorithm used
flags: Zero or one of
gnutls_privkey_flags_t
hash_data: holds the data to be signed
signature: will contain newly allocated signature
This function will sign the given hashed data using a signature algorithm supported by the private key. Signature algorithms are always used together with a hash functions. Different hash functions may be used for the RSA algorithm, but only SHA-XXX for the DSA keys.
You may use
gnutls_pubkey_get_preferred_hash_algorithm()
to determine the hash algorithm.Note that if
GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA
flag is specified this function will ignorehash_algo
and perform a raw PKCS1 signature.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
key: Holds the key
flags: zero for now
ciphertext: holds the data to be decrypted
plaintext: will contain the decrypted data, allocated with
gnutls_malloc()
This function will decrypt the given data using the algorithm supported by the private key.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
Signing existing structures, such as certificates, CRLs, or certificate requests, as well as associating public keys with structures is also possible using the key abstractions.
crq: should contain a
gnutls_x509_crq_t
structurekey: holds a public key
This function will set the public parameters from the given public key to the request.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
crt: should contain a
gnutls_x509_crt_t
structurekey: holds a public key
This function will set the public parameters from the given public key to the request.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
gnutls_x509_crt_privkey_sign (gnutls_x509_crt_t
crt, gnutls_x509_crt_t
issuer, gnutls_privkey_t
issuer_key, gnutls_digest_algorithm_t
dig, unsigned int
flags)
gnutls_x509_crl_privkey_sign (gnutls_x509_crl_t
crl, gnutls_x509_crt_t
issuer, gnutls_privkey_t
issuer_key, gnutls_digest_algorithm_t
dig, unsigned int
flags)
gnutls_x509_crq_privkey_sign (gnutls_x509_crq_t
crq, gnutls_privkey_t
key, gnutls_digest_algorithm_t
dig, unsigned int
flags)
In this section we present the smart-card and hardware security module (HSM) support in GnuTLS using PKCS #11 [PKCS11]. Hardware security modules and smart cards provide a way to store private keys and perform operations on them without exposing them. This decouples cryptographic keys from the applications that use them and provide an additional security layer against cryptographic key extraction. Since this can also be achieved in software components such as in Gnome keyring, we will use the term security module to describe any cryptographic key separation subsystem.
PKCS #11 is plugin API allowing applications to access cryptographic
operations on a security module, as well as to objects residing on it. PKCS
#11 modules exist for hardware tokens such as smart cards8,
cryptographic tokens, as well as for software modules like Gnome Keyring.
The objects residing on a security module may be certificates, public keys,
private keys or secret keys. Of those certificates and public/private key
pairs can be used with GnuTLS. PKCS #11's main advantage is that
it allows operations on private key objects such as decryption
and signing without exposing the key. In GnuTLS the PKCS #11 functionality is
available in gnutls/pkcs11.h
.
Moreover PKCS #11 can be (ab)used to allow all applications in the same operating system to access shared cryptographic keys and certificates in a uniform way, as in fig-pkcs11-vision. That way applications could load their trusted certificate list, as well as user certificates from a common PKCS #11 module. Such a provider is the p11-kit trust storage module9.
To allow all GnuTLS applications to transparently access smard cards
and tokens, PKCS #11 is automatically initialized during the global
initialization (see gnutls_global_init). The initialization function, to select
which modules to load reads certain module configuration files.
Those are stored in /etc/pkcs11/modules/
and
are the configuration files of p11-kit10.
For example a file that will load the OpenSC module, could be named
/etc/pkcs11/modules/opensc.module
and contain the following:
module: /usr/lib/opensc-pkcs11.so
If you use these configuration files, then there is no need for other initialization in GnuTLS, except for the PIN and token functions (see next section). In several cases, however, it is desirable to limit badly behaving modules (e.g., modules that add an unacceptable delay on initialization) to single applications. That can be done using the “enable-in:” option followed by the base name of applications that this module should be used.
In all cases, you can also manually initialize the PKCS #11 subsystem if the
default settings are not desirable. To completely disable PKCS #11 support you
need to call gnutls_pkcs11_init with the flag GNUTLS_PKCS11_FLAG_MANUAL
prior to gnutls_global_init.
flags: An ORed sequence of
GNUTLS_PKCS11_FLAG_
*deprecated_config_file: either NULL or the location of a deprecated configuration file
This function will initialize the PKCS 11 subsystem in gnutls. It will read configuration files if
GNUTLS_PKCS11_FLAG_AUTO
is used or allow you to independently load PKCS 11 modules usinggnutls_pkcs11_add_provider()
ifGNUTLS_PKCS11_FLAG_MANUAL
is specified.Normally you don't need to call this function since it is being called when the first PKCS 11 operation is requested using the
GNUTLS_PKCS11_FLAG_AUTO
flag. If another flags are required then it must be called independently prior to any PKCS 11 operation.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
Note that PKCS #11 modules must be reinitialized on the child processes
after a fork
. In older versions of GnuTLS it was
required to call gnutls_pkcs11_reinit; since 3.3.0 this is no
longer required, as reinitialization occurs automatically.
Objects stored in token such as a private keys are typically protected from access by a PIN or password. This PIN may be required to either read the object (if allowed) or to perform operations with it. To allow obtaining the PIN when accessing a protected object, as well as probe the user to insert the token the following functions allow to set a callback.
gnutls_pkcs11_set_token_function (gnutls_pkcs11_token_callback_t
fn, void *
userdata)
gnutls_pkcs11_set_pin_function (gnutls_pin_callback_t
fn, void *
userdata)
gnutls_pkcs11_add_provider (const char *
name, const char *
params)
gnutls_pkcs11_get_pin_function (void **
userdata)
The callback is of type gnutls_pin_callback_t
and will have as
input the provided userdata, the PIN attempt number, a URL describing the
token, a label describing the object and flags. The PIN must be at most
of pin_max
size and must be copied to pin variable. The function must
return 0 on success or a negative error code otherwise.
typedef int (*gnutls_pin_callback_t) (void *userdata, int attempt, const char *token_url, const char *token_label, unsigned int flags, char *pin, size_t pin_max);
The flags are of gnutls_pin_flag_t
type and are explained below.
GNUTLS_PIN_USER
GNUTLS_PIN_SO
GNUTLS_PIN_FINAL_TRY
GNUTLS_PIN_COUNT_LOW
GNUTLS_PIN_CONTEXT_SPECIFIC
GNUTLS_PIN_WRONG
Figure 5.2: The gnutls_pin_flag_t
enumeration.
Note that due to limitations of PKCS #11 there are issues when multiple libraries are sharing a module. To avoid this problem GnuTLS uses p11-kit that provides a middleware to control access to resources over the multiple users.
To avoid conflicts with multiple registered callbacks for PIN functions, gnutls_pkcs11_get_pin_function may be used to check for any previously set functions. In addition context specific PIN functions are allowed, e.g., by using functions below.
gnutls_certificate_set_pin_function (gnutls_certificate_credentials_t
cred, gnutls_pin_callback_t
fn, void *
userdata)
gnutls_pubkey_set_pin_function (gnutls_pubkey_t
key, gnutls_pin_callback_t
fn, void *
userdata)
gnutls_privkey_set_pin_function (gnutls_privkey_t
key, gnutls_pin_callback_t
fn, void *
userdata)
gnutls_pkcs11_obj_set_pin_function (gnutls_pkcs11_obj_t
obj, gnutls_pin_callback_t
fn, void *
userdata)
gnutls_x509_crt_set_pin_function (gnutls_x509_crt_t
crt, gnutls_pin_callback_t
fn, void *
userdata)
All PKCS #11 objects are referenced by GnuTLS functions by URLs as described in [PKCS11URI]. This allows for a consistent naming of objects across systems and applications in the same system. For example a public key on a smart card may be referenced as:
pkcs11:token=Nikos;serial=307521161601031;model=PKCS%2315; \ manufacturer=EnterSafe;object=test1;objecttype=public;\ id=32f153f3e37990b08624141077ca5dec2d15faed
while the smart card itself can be referenced as:
pkcs11:token=Nikos;serial=307521161601031;model=PKCS%2315;manufacturer=EnterSafe
Objects stored in a PKCS #11 token can be extracted if they are not marked as sensitive. Usually only private keys are marked as sensitive and cannot be extracted, while certificates and other data can be retrieved. The functions that can be used to access objects are shown below.
gnutls_pkcs11_obj_import_url (gnutls_pkcs11_obj_t
obj, const char *
url, unsigned int
flags)
gnutls_pkcs11_obj_export_url (gnutls_pkcs11_obj_t
obj, gnutls_pkcs11_url_type_t
detailed, char **
url)
obj: should contain a
gnutls_pkcs11_obj_t
structureitype: Denotes the type of information requested
output: where output will be stored
output_size: contains the maximum size of the output and will be overwritten with actual
This function will return information about the PKCS11 certificate such as the label, id as well as token information where the key is stored. When output is text it returns null terminated string although
output_size
contains the size of the actual data only.Returns:
GNUTLS_E_SUCCESS
(0) on success or a negative error code on error.Since: 2.12.0
gnutls_x509_crt_import_pkcs11 (gnutls_x509_crt_t
crt, gnutls_pkcs11_obj_t
pkcs11_crt)
gnutls_x509_crt_import_pkcs11_url (gnutls_x509_crt_t
crt, const char *
url, unsigned int
flags)
gnutls_x509_crt_list_import_pkcs11 (gnutls_x509_crt_t *
certs, unsigned int
cert_max, gnutls_pkcs11_obj_t * const
objs, unsigned int
flags)
Properties of the physical token can also be accessed and altered with GnuTLS. For example data in a token can be erased (initialized), PIN can be altered, etc.
gnutls_pkcs11_token_init (const char *
token_url, const char *
so_pin, const char *
label)
gnutls_pkcs11_token_get_url (unsigned int
seq, gnutls_pkcs11_url_type_t
detailed, char **
url)
gnutls_pkcs11_token_get_info (const char *
url, gnutls_pkcs11_token_info_t
ttype, void *
output, size_t *
output_size)
gnutls_pkcs11_token_get_flags (const char *
url, unsigned int *
flags)
gnutls_pkcs11_token_set_pin (const char *
token_url, const char *
oldpin, const char *
newpin, unsigned int
flags)
The following examples demonstrate the usage of the API. The first example will list all available PKCS #11 tokens in a system and the latter will list all certificates in a token that have a corresponding private key.
int i; char* url; gnutls_global_init(); for (i=0;;i++) { ret = gnutls_pkcs11_token_get_url(i, &url); if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE) break; if (ret < 0) exit(1); fprintf(stdout, "Token[%d]: URL: %s\n", i, url); gnutls_free(url); } gnutls_global_deinit();
/* This example code is placed in the public domain. */ #include <config.h> #include <gnutls/gnutls.h> #include <gnutls/pkcs11.h> #include <stdio.h> #include <stdlib.h> #define URL "pkcs11:URL" int main(int argc, char **argv) { gnutls_pkcs11_obj_t *obj_list; gnutls_x509_crt_t xcrt; unsigned int obj_list_size = 0; gnutls_datum_t cinfo; int ret; unsigned int i; obj_list_size = 0; ret = gnutls_pkcs11_obj_list_import_url(NULL, &obj_list_size, URL, GNUTLS_PKCS11_OBJ_ATTR_CRT_WITH_PRIVKEY, 0); if (ret < 0 && ret != GNUTLS_E_SHORT_MEMORY_BUFFER) return -1; /* no error checking from now on */ obj_list = malloc(sizeof(*obj_list) * obj_list_size); gnutls_pkcs11_obj_list_import_url(obj_list, &obj_list_size, URL, GNUTLS_PKCS11_OBJ_ATTR_CRT_WITH_PRIVKEY, 0); /* now all certificates are in obj_list */ for (i = 0; i < obj_list_size; i++) { gnutls_x509_crt_init(&xcrt); gnutls_x509_crt_import_pkcs11(xcrt, obj_list[i]); gnutls_x509_crt_print(xcrt, GNUTLS_CRT_PRINT_FULL, &cinfo); fprintf(stdout, "cert[%d]:\n %s\n\n", i, cinfo.data); gnutls_free(cinfo.data); gnutls_x509_crt_deinit(xcrt); } return 0; }
With GnuTLS you can copy existing private keys and certificates
to a token. Note that when copying private keys it is recommended to mark
them as sensitive using the GNUTLS_PKCS11_OBJ_FLAG_MARK_SENSITIVE
to prevent its extraction. An object can be marked as private using the flag
GNUTLS_PKCS11_OBJ_FLAG_MARK_PRIVATE
, to require PIN to be
entered before accessing the object (for operations or otherwise).
token_url: A PKCS
11
URL specifying a tokenkey: A private key
label: A name to be used for the stored data
key_usage: One of GNUTLS_KEY_*
flags: One of GNUTLS_PKCS11_OBJ_* flags
This function will copy a private key into a PKCS
11
token specified by a URL. It is highly recommended flags to containGNUTLS_PKCS11_OBJ_FLAG_MARK_SENSITIVE
unless there is a strong reason not to.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
token_url: A PKCS
11
URL specifying a tokencrt: A certificate
label: A name to be used for the stored data
flags: One of GNUTLS_PKCS11_OBJ_FLAG_*
This function will copy a certificate into a PKCS
11
token specified by a URL. The certificate can be marked as trusted or not.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
object_url: The URL of the object to delete.
flags: One of GNUTLS_PKCS11_OBJ_* flags
This function will delete objects matching the given URL. Note that not all tokens support the delete operation.
Returns: On success, the number of objects deleted is returned, otherwise a negative error value.
Since: 2.12.0
It is possible to use a PKCS #11 token to a TLS session, as shown in ex-pkcs11-client. In addition the following functions can be used to load PKCS #11 key and certificates by specifying a PKCS #11 URL instead of a filename.
gnutls_certificate_set_x509_trust_file (gnutls_certificate_credentials_t
cred, const char *
cafile, gnutls_x509_crt_fmt_t
type)
gnutls_certificate_set_x509_key_file2 (gnutls_certificate_credentials_t
res, const char *
certfile, const char *
keyfile, gnutls_x509_crt_fmt_t
type, const char *
pass, unsigned int
flags)
cred: is a
gnutls_certificate_credentials_t
structure.This function adds the system's default trusted CAs in order to verify client or server certificates.
In the case the system is currently unsupported
GNUTLS_E_UNIMPLEMENTED_FEATURE
is returned.Returns: the number of certificates processed or a negative error code on error.
Since: 3.0.20
Program that allows operations on PKCS #11 smart cards and security modules.
To use PKCS #11 tokens with GnuTLS the p11-kit configuration files need to be setup. That is create a .module file in /etc/pkcs11/modules with the contents 'module: /path/to/pkcs11.so'. Alternatively the configuration file /etc/gnutls/pkcs11.conf has to exist and contain a number of lines of the form 'load=/usr/lib/opensc-pkcs11.so'.
You can provide the PIN to be used for the PKCS #11 operations with the environment variables GNUTLS_PIN and GNUTLS_SO_PIN.
This section was generated by AutoGen,
using the agtexi-cmd
template and the option descriptions for the p11tool
program.
This software is released under the GNU General Public License, version 3 or later.
This is the automatically generated usage text for p11tool.
The text printed is the same whether selected with the help
option
(--help) or the more-help
option (--more-help). more-help
will print
the usage text by passing it through a pager program.
more-help
is disabled on platforms without a working
fork(2)
function. The PAGER
environment variable is
used to select the program, defaulting to more. Both will exit
with a status code of 0.
p11tool - GnuTLS PKCS #11 tool Usage: p11tool [ -<flag> [<val>] | --<name>[{=| }<val>] ]... [url] -d, --debug=num Enable debugging - it must be in the range: 0 to 9999 --outfile=str Output file --list-tokens List all available tokens --export Export the object specified by the URL --export-chain Export the certificate specified by the URL and its chain of trust --list-mechanisms List all available mechanisms in a token --info List information on an available object in a token --list-all List all available objects in a token --list-all-certs List all available certificates in a token --list-certs List all certificates that have an associated private key --list-all-privkeys List all available private keys in a token --list-privkeys an alias for the 'list-all-privkeys' option --list-keys an alias for the 'list-all-privkeys' option --list-all-trusted List all available certificates marked as trusted --write Writes the loaded objects to a PKCS #11 token --delete Deletes the objects matching the PKCS #11 URL --generate-random=num Generate random data --generate-rsa Generate an RSA private-public key pair --generate-dsa Generate an RSA private-public key pair --generate-ecc Generate an RSA private-public key pair --export-pubkey Export the public key for a private key --label=str Sets a label for the write operation --mark-wrap Marks the generated key to be a wrapping key - disabled as '--no-mark-wrap' --mark-trusted Marks the object to be written as trusted - disabled as '--no-mark-trusted' --mark-ca Marks the object to be written as a CA - disabled as '--no-mark-ca' --mark-private Marks the object to be written as private - disabled as '--no-mark-private' - enabled by default --trusted an alias for the 'mark-trusted' option --ca an alias for the 'mark-ca' option --private an alias for the 'mark-private' option - enabled by default --login Force (user) login to token - disabled as '--no-login' --so-login Force security officer login to token - disabled as '--no-so-login' --admin-login an alias for the 'so-login' option --detailed-url Print detailed URLs - disabled as '--no-detailed-url' -!, --secret-key=str Provide a hex encoded secret key -", --load-privkey=file Private key file to use - file must pre-exist -#, --load-pubkey=file Public key file to use - file must pre-exist -$, --load-certificate=file Certificate file to use - file must pre-exist -8, --pkcs8 Use PKCS #8 format for private keys -%, --bits=num Specify the number of bits for key generate -&, --curve=str Specify the curve used for EC key generation -', --sec-param=str Specify the security level -(, --inder Use DER/RAW format for input - disabled as '--no-inder' -), --inraw an alias for the 'inder' option -*, --outder Use DER format for output certificates, private keys, and DH parameters - disabled as '--no-outder' -+, --outraw an alias for the 'outder' option -,, --initialize Initializes a PKCS #11 token --, --set-pin=str Specify the PIN to use on token initialization -., --set-so-pin=str Specify the Security Officer's PIN to use on token initialization -/, --provider=file Specify the PKCS #11 provider library - file must pre-exist -0, --batch Disable all interaction with the tool. All parameters need to be specified on command line. -v, --version[=arg] output version information and exit -h, --help display extended usage information and exit -!, --more-help extended usage information passed thru pager Options are specified by doubled hyphens and their name or by a single hyphen and the flag character. Operands and options may be intermixed. They will be reordered. Program that allows operations on PKCS #11 smart cards and security modules. To use PKCS #11 tokens with GnuTLS the p11-kit configuration files need to be setup. That is create a .module file in /etc/pkcs11/modules with the contents 'module: /path/to/pkcs11.so'. Alternatively the configuration file /etc/gnutls/pkcs11.conf has to exist and contain a number of lines of the form 'load=/usr/lib/opensc-pkcs11.so'. You can provide the PIN to be used for the PKCS #11 operations with the environment variables GNUTLS_PIN and GNUTLS_SO_PIN.
This is the “enable debugging” option. This option takes a number argument. Specifies the debug level.
This is the “export the certificate specified by the url and its chain of trust” option. Exports the certificate specified by the URL and generates its chain of trust based on the stored certificates in the module.
This is the “list all available private keys in a token” option. Lists all the private keys in a token that match the specified URL.
This is an alias for the list-all-privkeys
option,
see the list-all-privkeys option documentation.
This is an alias for the list-all-privkeys
option,
see the list-all-privkeys option documentation.
This is the “writes the loaded objects to a pkcs #11 token” option. It can be used to write private keys, certificates or secret keys to a token.
This is the “generate random data” option. This option takes a number argument. Asks the token to generate a number of bytes of random bytes.
This is the “generate an rsa private-public key pair” option. Generates an RSA private-public key pair on the specified token.
This is the “generate an rsa private-public key pair” option. Generates an RSA private-public key pair on the specified token.
This is the “generate an rsa private-public key pair” option. Generates an RSA private-public key pair on the specified token.
This is the “export the public key for a private key” option. Exports the public key for the specified private key
This is the “marks the generated key to be a wrapping key” option.
This option has some usage constraints. It:
Marks the generated key with the CKA_WRAP flag.
This is the “marks the object to be written as trusted” option.
This option has some usage constraints. It:
Marks the object to be generated/copied with the CKA_TRUST flag.
This is the “marks the object to be written as a ca” option.
This option has some usage constraints. It:
Marks the object to be generated/copied with the CKA_CERTIFICATE_CATEGORY as CA.
This is the “marks the object to be written as private” option.
This option has some usage constraints. It:
Marks the object to be generated/copied with the CKA_PRIVATE flag. The written object will require a PIN to be used.
This is an alias for the mark-trusted
option,
see the mark-trusted option documentation.
This is an alias for the mark-ca
option,
see the mark-ca option documentation.
This is an alias for the mark-private
option,
see the mark-private option documentation.
This is the “force security officer login to token” option.
This option has some usage constraints. It:
Forces login to the token as security officer (admin).
This is an alias for the so-login
option,
see the so-login option documentation.
This is the “specify the security level” option. This option takes a string argument Security parameter. This is alternative to the bits option. Available options are [low, legacy, medium, high, ultra].
This is the “use der/raw format for input” option.
This option has some usage constraints. It:
Use DER/RAW format for input certificates and private keys.
This is an alias for the inder
option,
see the inder option documentation.
This is the “use der format for output certificates, private keys, and dh parameters” option.
This option has some usage constraints. It:
The output will be in DER or RAW format.
This is an alias for the outder
option,
see the outder option documentation.
This is the “specify the pin to use on token initialization” option. This option takes a string argument. Alternatively the GNUTLS_PIN environment variable may be used.
This is the “specify the security officer's pin to use on token initialization” option. This option takes a string argument. Alternatively the GNUTLS_SO_PIN environment variable may be used.
This is the “specify the pkcs #11 provider library” option. This option takes a file argument. This will override the default options in /etc/gnutls/pkcs11.conf
One of the following exit values will be returned:
To view all tokens in your system use:
$ p11tool --list-tokens
To view all objects in a token use:
$ p11tool --login --list-all "pkcs11:TOKEN-URL"
To store a private key and a certificate in a token run:
$ p11tool --login --write "pkcs11:URL" --load-privkey key.pem \ --label "Mykey" $ p11tool --login --write "pkcs11:URL" --load-certificate cert.pem \ --label "Mykey"
Note that some tokens require the same label to be used for the certificate and its corresponding private key.
To generate an RSA private key inside the token use:
$ p11tool --login --generate-rsa --bits 1024 --label "MyNewKey" \ --outfile MyNewKey.pub "pkcs11:TOKEN-URL"
The bits parameter in the above example is explicitly set because some tokens only support limited choices in the bit length. The output file is the corresponding public key. This key can be used to general a certificate request with certtool.
certtool --generate-request --load-privkey "pkcs11:KEY-URL" \ --load-pubkey MyNewKey.pub --outfile request.pem
In this section we present the Trusted Platform Module (TPM) support in GnuTLS.
There was a big hype when the TPM chip was introduced into computers. Briefly it is a co-processor in your PC that allows it to perform calculations independently of the main processor. This has good and bad side-effects. In this section we focus on the good ones; these are the fact that you can use the TPM chip to perform cryptographic operations on keys stored in it, without accessing them. That is very similar to the operation of a PKCS #11 smart card. The chip allows for storage and usage of RSA keys, but has quite some operational differences from PKCS #11 module, and thus require different handling. The basic TPM operations supported and used by GnuTLS, are key generation and signing.
The next sections assume that the TPM chip in the system is already initialized and in a operational state.
In GnuTLS the TPM functionality is available in gnutls/tpm.h
.
The RSA keys in the TPM module may either be stored in a flash memory within TPM or stored in a file in disk. In the former case the key can provide operations as with PKCS #11 and is identified by a URL. The URL is described in [TPMURI] and is of the following form.
tpmkey:uuid=42309df8-d101-11e1-a89a-97bb33c23ad1;storage=user
It consists from a unique identifier of the key as well as the part of the flash memory the key is stored at. The two options for the storage field are `user' and `system'. The user keys are typically only available to the generating user and the system keys to all users. The stored in TPM keys are called registered keys.
The keys that are stored in the disk are exported from the TPM but in an encrypted form. To access them two passwords are required. The first is the TPM Storage Root Key (SRK), and the other is a key-specific password. Also those keys are identified by a URL of the form:
tpmkey:file=/path/to/file
When objects require a PIN to be accessed the same callbacks as with PKCS #11 objects are expected (see Accessing objects that require a PIN). Note that the PIN function may be called multiple times to unlock the SRK and the specific key in use. The label in the key function will then be set to `SRK' when unlocking the SRK key, or to `TPM' when unlocking any other key.
All keys used by the TPM must be generated by the TPM. This can be done using gnutls_tpm_privkey_generate.
pk: the public key algorithm
bits: the security bits
srk_password: a password to protect the exported key (optional)
key_password: the password for the TPM (optional)
format: the format of the private key
pub_format: the format of the public key
privkey: the generated key
pubkey: the corresponding public key (may be null)
flags: should be a list of GNUTLS_TPM_* flags
This function will generate a private key in the TPM chip. The private key will be generated within the chip and will be exported in a wrapped with TPM's master key form. Furthermore the wrapped key can be protected with the provided
password
.Note that bits in TPM is quantized value. If the input value is not one of the allowed values, then it will be quantized to one of 512, 1024, 2048, 4096, 8192 and 16384.
Allowed flags are:
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
gnutls_tpm_get_registered (gnutls_tpm_key_list_t *
list)
gnutls_tpm_key_list_deinit (gnutls_tpm_key_list_t
list)
gnutls_tpm_key_list_get_url (gnutls_tpm_key_list_t
list, unsigned int
idx, char **
url, unsigned int
flags)
url: the URL describing the key
srk_password: a password for the SRK key
This function will unregister the private key from the TPM chip.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
The TPM keys can be used directly by the abstract key types and do not require any special structures. Moreover functions like gnutls_certificate_set_x509_key_file2 can access TPM URLs.
gnutls_privkey_import_tpm_raw (gnutls_privkey_t
pkey, const gnutls_datum_t *
fdata, gnutls_tpmkey_fmt_t
format, const char *
srk_password, const char *
key_password, unsigned int
flags)
gnutls_pubkey_import_tpm_raw (gnutls_pubkey_t
pkey, const gnutls_datum_t *
fdata, gnutls_tpmkey_fmt_t
format, const char *
srk_password, unsigned int
flags)
pkey: The private key
url: The URL of the TPM key to be imported
srk_password: The password for the SRK key (optional)
key_password: A password for the key (optional)
flags: One of the GNUTLS_PRIVKEY_* flags
This function will import the given private key to the abstract
gnutls_privkey_t
structure.Note that unless
GNUTLS_PRIVKEY_DISABLE_CALLBACKS
is specified, if incorrect (or NULL) passwords are given the PKCS11 callback functions will be used to obtain the correct passwords. Otherwise if the SRK password is wrongGNUTLS_E_TPM_SRK_PASSWORD_ERROR
is returned and if the key password is wrong or not provided thenGNUTLS_E_TPM_KEY_PASSWORD_ERROR
is returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
pkey: The public key
url: The URL of the TPM key to be imported
srk_password: The password for the SRK key (optional)
flags: should be zero
This function will import the given private key to the abstract
gnutls_privkey_t
structure.Note that unless
GNUTLS_PUBKEY_DISABLE_CALLBACKS
is specified, if incorrect (or NULL) passwords are given the PKCS11 callback functions will be used to obtain the correct passwords. Otherwise if the SRK password is wrongGNUTLS_E_TPM_SRK_PASSWORD_ERROR
is returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
The registered keys (that are stored in the TPM) can be listed using one of the following functions. Those keys are unfortunately only identified by their UUID and have no label or other human friendly identifier. Keys can be deleted from permament storage using gnutls_tpm_privkey_delete.
gnutls_tpm_get_registered (gnutls_tpm_key_list_t *
list)
gnutls_tpm_key_list_deinit (gnutls_tpm_key_list_t
list)
gnutls_tpm_key_list_get_url (gnutls_tpm_key_list_t
list, unsigned int
idx, char **
url, unsigned int
flags)
url: the URL describing the key
srk_password: a password for the SRK key
This function will unregister the private key from the TPM chip.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
Program that allows handling cryptographic data from the TPM chip.
This section was generated by AutoGen,
using the agtexi-cmd
template and the option descriptions for the tpmtool
program.
This software is released under the GNU General Public License, version 3 or later.
This is the automatically generated usage text for tpmtool.
The text printed is the same whether selected with the help
option
(--help) or the more-help
option (--more-help). more-help
will print
the usage text by passing it through a pager program.
more-help
is disabled on platforms without a working
fork(2)
function. The PAGER
environment variable is
used to select the program, defaulting to more. Both will exit
with a status code of 0.
tpmtool - GnuTLS TPM tool Usage: tpmtool [ -<flag> [<val>] | --<name>[{=| }<val>] ]... -d, --debug=num Enable debugging - it must be in the range: 0 to 9999 --infile=file Input file - file must pre-exist --outfile=str Output file --generate-rsa Generate an RSA private-public key pair --register Any generated key will be registered in the TPM - requires the option 'generate-rsa' --signing Any generated key will be a signing key - requires the option 'generate-rsa' -- and prohibits the option 'legacy' --legacy Any generated key will be a legacy key - requires the option 'generate-rsa' -- and prohibits the option 'signing' --user Any registered key will be a user key - requires the option 'register' -- and prohibits the option 'system' --system Any registred key will be a system key - requires the option 'register' -- and prohibits the option 'user' --pubkey=str Prints the public key of the provided key --list Lists all stored keys in the TPM --delete=str Delete the key identified by the given URL (UUID). --sec-param=str Specify the security level [low, legacy, medium, high, ultra]. --bits=num Specify the number of bits for key generate --inder Use the DER format for keys. - disabled as '--no-inder' --outder Use DER format for output keys - disabled as '--no-outder' -v, --version[=arg] output version information and exit -h, --help display extended usage information and exit -!, --more-help extended usage information passed thru pager Options are specified by doubled hyphens and their name or by a single hyphen and the flag character. Program that allows handling cryptographic data from the TPM chip.
This is the “enable debugging” option. This option takes a number argument. Specifies the debug level.
This is the “generate an rsa private-public key pair” option. Generates an RSA private-public key pair in the TPM chip. The key may be stored in filesystem and protected by a PIN, or stored (registered) in the TPM chip flash.
This is the “any registered key will be a user key” option.
This option has some usage constraints. It:
The generated key will be stored in a user specific persistent storage.
This is the “any registred key will be a system key” option.
This option has some usage constraints. It:
The generated key will be stored in system persistent storage.
This is the “specify the security level [low, legacy, medium, high, ultra].” option. This option takes a string argument Security parameter. This is alternative to the bits option. Note however that the values allowed by the TPM chip are quantized and given values may be rounded up.
This is the “use the der format for keys.” option.
This option has some usage constraints. It:
The input files will be assumed to be in the portable DER format of TPM. The default format is a custom format used by various TPM tools
This is the “use der format for output keys” option.
This option has some usage constraints. It:
The output will be in the TPM portable DER format.
One of the following exit values will be returned:
To generate a key that is to be stored in filesystem use:
$ tpmtool --generate-rsa --bits 2048 --outfile tpmkey.pem
To generate a key that is to be stored in TPM's flash use:
$ tpmtool --generate-rsa --bits 2048 --register --user
To get the public key of a TPM key use:
$ tpmtool --pubkey tpmkey:uuid=58ad734b-bde6-45c7-89d8-756a55ad1891;storage=user \ --outfile pubkey.pem
or if the key is stored in the filesystem:
$ tpmtool --pubkey tpmkey:file=tmpkey.pem --outfile pubkey.pem
To list all keys stored in TPM use:
$ tpmtool --list
This chapter tries to explain the basic functionality of the current GnuTLS library. Note that there may be additional functionality not discussed here but included in the library. Checking the header files in /usr/include/gnutls/ and the manpages is recommended.
A brief description of how GnuTLS sessions operate is shown at fig-gnutls-design. This section will become more clear when it is completely read. As shown in the figure, there is a read-only global state that is initialized once by the global initialization function. This global structure, among others, contains the memory allocation functions used, structures needed for the ASN.1 parser and depending on the system's CPU, pointers to hardware accelerated encryption functions. This structure is never modified by any GnuTLS function, except for the deinitialization function which frees all allocated memory and must be called after the program has permanently finished using GnuTLS.
The credentials structures are used by the authentication methods, such as certificate authentication. They store certificates, privates keys, and other information that is needed to prove the identity to the peer, and/or verify the indentity of the peer. The information stored in the credentials structures is initialized once and then can be shared by many TLS sessions.
A GnuTLS session contains all the required information to handle one secure connection. The session communicates with the peers using the provided functions of the transport layer. Every session has a unique session ID shared with the peer.
Since TLS sessions can be resumed, servers need a database back-end to hold the session's parameters. Every GnuTLS session after a successful handshake calls the appropriate back-end function (see resume) to store the newly negotiated session. The session database is examined by the server just after having received the client hello11, and if the session ID sent by the client, matches a stored session, the stored session will be retrieved, and the new session will be a resumed one, and will share the same session ID with the previous one.
In GnuTLS most functions return an integer type as a result. In almost all cases a zero or a positive number means success, and a negative number indicates failure, or a situation that some action has to be taken. Thus negative error codes may be fatal or not.
Fatal errors terminate the connection immediately and further sends
and receives will be disallowed. Such an example is
GNUTLS_E_DECRYPTION_FAILED
. Non-fatal errors may warn about
something, i.e., a warning alert was received, or indicate the some
action has to be taken. This is the case with the error code
GNUTLS_E_REHANDSHAKE
returned by gnutls_record_recv.
This error code indicates that the server requests a re-handshake. The
client may ignore this request, or may reply with an alert. You can
test if an error code is a fatal one by using the
gnutls_error_is_fatal.
All errors can be converted to a descriptive string using gnutls_strerror.
If any non fatal errors, that require an action, are to be returned by
a function, these error codes will be documented in the function's
reference. For example the error codes GNUTLS_E_WARNING_ALERT_RECEIVED
and GNUTLS_E_FATAL_ALERT_RECEIVED
that may returned when receiving data, should be handled by notifying the
user of the alert (as explained in Handling alerts).
See Error codes, for a description of the available error codes.
All strings that are to provided as input to GnuTLS functions should be in UTF-8 unless otherwise specified. Output strings are also in UTF-8 format unless otherwise specified.
When data of a fixed size are provided to GnuTLS functions then
the helper structure gnutls_datum_t
is often used. Its definition is
shown below.
typedef struct { unsigned char *data; unsigned int size; } gnutls_datum_t;
Other functions that require data for scattered read use a structure similar
to struct iovec
typically used by readv
. It is shown
below.
typedef struct { void *iov_base; /* Starting address */ size_t iov_len; /* Number of bytes to transfer */ } giovec_t;
In many cases things may not go as expected and further information, to assist debugging, from GnuTLS is desired. Those are the cases where the gnutls_global_set_log_level and gnutls_global_set_log_function are to be used. Those will print verbose information on the GnuTLS functions internal flow.
gnutls_global_set_log_level (int
level)
gnutls_global_set_log_function (gnutls_log_func
log_func)
Alternatively the environment variable GNUTLS_DEBUG_LEVEL
can be
set to a logging level and GnuTLS will output debugging output to standard
error. Other available environment variables are shown in tab:environment.
Variable | Purpose
|
---|---|
GNUTLS_DEBUG_LEVEL
| When set to a numeric value, it sets the default debugging level for GnuTLS applications.
|
GNUTLS_CPUID_OVERRIDE
| That environment variable can be used to
explicitly enable/disable the use of certain CPU capabilities. Note that CPU
detection cannot be overriden, i.e., VIA options cannot be enabled on an Intel
CPU. The currently available options are:
|
GNUTLS_FORCE_FIPS_MODE
| In setups where GnuTLS is compiled with support for FIPS140-2 (see –enable-fips140-mode in configure), that option if set to one enforces the FIPS140 mode.
|
Table 6.1: Environment variables used by the library.
When debugging is not required, important issues, such as detected attacks on the protocol still need to be logged. This is provided by the logging function set by gnutls_global_set_audit_log_function. The provided function will receive an message and the corresponding TLS session. The session information might be used to derive IP addresses or other information about the peer involved.
log_func: it is the audit log function
This is the function to set the audit logging function. This is a function to report important issues, such as possible attacks in the protocol. This is different from
gnutls_global_set_log_function()
because it will report also session-specific events. The session parameter will be null if there is no corresponding TLS session.
gnutls_audit_log_func
is of the form, void (*gnutls_audit_log_func)( gnutls_session_t, const char*);Since: 3.0
The GnuTLS library is thread safe by design, meaning that objects of the library such as TLS sessions, can be safely divided across threads as long as a single thread accesses a single object. This is sufficient to support a server which handles several sessions per thread. If, however, an object needs to be shared across threads then access must be protected with a mutex. Read-only access to objects, for example the credentials holding structures, is also thread-safe.
The random generator of the cryptographic back-end, utilizes mutex locks (e.g., pthreads on GNU/Linux and CriticalSection on Windows) which are setup by GnuTLS on library initialization. Prior to version 3.3.0 they were setup by calling gnutls_global_init. On special systems you could manually specify the locking system using the function gnutls_global_set_mutex before calling any other GnuTLS function. Setting mutexes manually is not recommended. An example of non-native thread usage is shown below.
#include <gnutls/gnutls.h> int main() { /* When the system mutexes are not to be used * gnutls_global_set_mutex() must be called explicitly */ gnutls_global_set_mutex (mutex_init, mutex_deinit, mutex_lock, mutex_unlock); }
init: mutex initialization function
deinit: mutex deinitialization function
lock: mutex locking function
unlock: mutex unlocking function
With this function you are allowed to override the default mutex locks used in some parts of gnutls and dependent libraries. This function should be used if you have complete control of your program and libraries. Do not call this function from a library, or preferrably from any application unless really needed to. GnuTLS will use the appropriate locks for the running system.
This function must be called prior to any other gnutls function.
Since: 2.12.0
There are several cases where GnuTLS may need out of band input from your program. This is now implemented using some callback functions, which your program is expected to register.
An example of this type of functions are the push and pull callbacks which are used to specify the functions that will retrieve and send data to the transport layer.
gnutls_transport_set_push_function (gnutls_session_t
session, gnutls_push_func
push_func)
gnutls_transport_set_pull_function (gnutls_session_t
session, gnutls_pull_func
pull_func)
Other callback functions may require more complicated input and data
to be allocated. Such an example is
gnutls_srp_set_server_credentials_function.
All callbacks should allocate and free memory using
gnutls_malloc
and gnutls_free
.
To use GnuTLS, you have to perform some changes to your sources and your build system. The necessary changes are explained in the following subsections.
All the data types and functions of the GnuTLS library are defined in the header file gnutls/gnutls.h. This must be included in all programs that make use of the GnuTLS library.
The GnuTLS library is initialized on load; prior to 3.3.0 was initialized by calling gnutls_global_init. The initialization typically enables CPU-specific acceleration, performs any required precalculations needed, opens any required system devices (e.g., /dev/urandom on Linux) and initializes subsystems that could be used later.
The resources allocated by the initialization process will be released on library deinitialization, or explictly by calling gnutls_global_deinit.
Note that during initialization file descriptors may be kept open by GnuTLS (e.g. /dev/urandom) on library load. Applications closing all unknown file descriptors must immediately call gnutls_global_init, after that, to ensure they don't disrupt GnuTLS' operation.
It is often desirable to check that the version of `gnutls' used is indeed one which fits all requirements. Even with binary compatibility new features may have been introduced but due to problem with the dynamic linker an old version is actually used. So you may want to check that the version is okay right after program start-up. See the function gnutls_check_version.
On the other hand, it is often desirable to support more than one
versions of the library. In that case you could utilize compile-time
feature checks using the the GNUTLS_VERSION_NUMBER
macro.
For example, to conditionally add code for GnuTLS 3.2.1 or later, you may use:
#if GNUTLS_VERSION_NUMBER >= 0x030201 ... #endif
If you want to compile a source file including the gnutls/gnutls.h header file, you must make sure that the compiler can find it in the directory hierarchy. This is accomplished by adding the path to the directory in which the header file is located to the compilers include file search path (via the -I option).
However, the path to the include file is determined at the time the source is configured. To solve this problem, the library uses the external package pkg-config that knows the path to the include file and other configuration options. The options that need to be added to the compiler invocation at compile time are output by the --cflags option to pkg-config gnutls. The following example shows how it can be used at the command line:
gcc -c foo.c `pkg-config gnutls --cflags`
Adding the output of ‘pkg-config gnutls --cflags’ to the compilers command line will ensure that the compiler can find the gnutls/gnutls.h header file.
A similar problem occurs when linking the program with the library. Again, the compiler has to find the library files. For this to work, the path to the library files has to be added to the library search path (via the -L option). For this, the option --libs to pkg-config gnutls can be used. For convenience, this option also outputs all other options that are required to link the program with the library (for instance, the ‘-ltasn1’ option). The example shows how to link foo.o with the library to a program foo.
gcc -o foo foo.o `pkg-config gnutls --libs`
Of course you can also combine both examples to a single command by specifying both options to pkg-config:
gcc -o foo foo.c `pkg-config gnutls --cflags --libs`
When a program uses the GNU autoconf system, then the following line or similar can be used to detect the presence of GnuTLS.
PKG_CHECK_MODULES([LIBGNUTLS], [gnutls >= 3.3.0]) AC_SUBST([LIBGNUTLS_CFLAGS]) AC_SUBST([LIBGNUTLS_LIBS])
In the previous sections we have discussed the global initialization required for GnuTLS as well as the initialization required for each authentication method's credentials (see Authentication). In this section we elaborate on the TLS or DTLS session initiation. Each session is initialized using gnutls_init which among others is used to specify the type of the connection (server or client), and the underlying protocol type, i.e., datagram (UDP) or reliable (TCP).
session: is a pointer to a
gnutls_session_t
structure.flags: indicate if this session is to be used for server or client.
This function initializes the current session to null. Every session must be initialized before use, so internal structures can be allocated. This function allocates structures which can only be free'd by calling
gnutls_deinit()
. ReturnsGNUTLS_E_SUCCESS
(0) on success.
flags
can be one ofGNUTLS_CLIENT
andGNUTLS_SERVER
. For a DTLS entity, the flagsGNUTLS_DATAGRAM
andGNUTLS_NONBLOCK
are also available. The latter flag will enable a non-blocking operation of the DTLS timers.The flag
GNUTLS_NO_REPLAY_PROTECTION
will disable any replay protection in DTLS mode. That must only used when replay protection is achieved using other means.Note that since version 3.1.2 this function enables some common TLS extensions such as session tickets and OCSP certificate status request in client side by default. To prevent that use the
GNUTLS_NO_EXTENSIONS
flag.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
After the session initialization details on the allowed ciphersuites and protocol versions should be set using the priority functions such as gnutls_priority_set_direct. We elaborate on them in Priority Strings. The credentials used for the key exchange method, such as certificates or usernames and passwords should also be associated with the session current session using gnutls_credentials_set.
session: is a
gnutls_session_t
structure.type: is the type of the credentials
cred: is a pointer to a structure.
Sets the needed credentials for the specified type. Eg username, password - or public and private keys etc. The
cred
parameter is a structure that depends on the specified type and on the current session (client or server).In order to minimize memory usage, and share credentials between several threads gnutls keeps a pointer to cred, and not the whole cred structure. Thus you will have to keep the structure allocated until you call
gnutls_deinit()
.For
GNUTLS_CRD_ANON
,cred
should begnutls_anon_client_credentials_t
in case of a client. In case of a server it should begnutls_anon_server_credentials_t
.For
GNUTLS_CRD_SRP
,cred
should begnutls_srp_client_credentials_t
in case of a client, andgnutls_srp_server_credentials_t
, in case of a server.For
GNUTLS_CRD_CERTIFICATE
,cred
should begnutls_certificate_credentials_t
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
Each authentication method is associated with a key exchange method, and a credentials type. The contents of the credentials is method-dependent, e.g. certificates for certificate authentication and should be initialized and associated with a session (see gnutls_credentials_set). A mapping of the key exchange methods with the credential types is shown in tab:key-exchange-cred.
Authentication method | Key exchange | Client credentials | Server credentials
|
---|---|---|---|
Certificate | KX_RSA ,
KX_DHE_RSA ,
KX_DHE_DSS ,
KX_ECDHE_RSA ,
KX_ECDHE_ECDSA ,
KX_RSA_EXPORT
| CRD_CERTIFICATE
| CRD_CERTIFICATE
|
Password and certificate | KX_SRP_RSA , KX_SRP_DSS
| CRD_SRP
| CRD_CERTIFICATE , CRD_SRP
|
Password | KX_SRP
| CRD_SRP
| CRD_SRP
|
Anonymous | KX_ANON_DH ,
KX_ANON_ECDH
| CRD_ANON
| CRD_ANON
|
Pre-shared key | KX_PSK ,
KX_DHE_PSK , KX_ECDHE_PSK
| CRD_PSK
| CRD_PSK
|
Table 6.2: Key exchange algorithms and the corresponding credential types.
When using certificates the server is required to have at least one certificate and private key pair. Clients may not hold such a pair, but a server could require it. In this section we discuss general issues applying to both client and server certificates. The next section will elaborate on issues arising from client authentication only.
gnutls_certificate_allocate_credentials (gnutls_certificate_credentials_t *
res)
gnutls_certificate_free_credentials (gnutls_certificate_credentials_t
sc)
After the credentials structures are initialized, the certificate and key pair must be loaded. This occurs before any TLS session is initialized, and the same structures are reused for multiple sessions. Depending on the certificate type different loading functions are available, as shown below. For X.509 certificates, the functions will accept and use a certificate chain that leads to a trusted authority. The certificate chain must be ordered in such way that every certificate certifies the one before it. The trusted authority's certificate need not to be included since the peer should possess it already.
gnutls_certificate_set_x509_key_mem2 (gnutls_certificate_credentials_t
res, const gnutls_datum_t *
cert, const gnutls_datum_t *
key, gnutls_x509_crt_fmt_t
type, const char *
pass, unsigned int
flags)
gnutls_certificate_set_x509_key (gnutls_certificate_credentials_t
res, gnutls_x509_crt_t *
cert_list, int
cert_list_size, gnutls_x509_privkey_t
key)
gnutls_certificate_set_x509_key_file2 (gnutls_certificate_credentials_t
res, const char *
certfile, const char *
keyfile, gnutls_x509_crt_fmt_t
type, const char *
pass, unsigned int
flags)
gnutls_certificate_set_openpgp_key_mem (gnutls_certificate_credentials_t
res, const gnutls_datum_t *
cert, const gnutls_datum_t *
key, gnutls_openpgp_crt_fmt_t
format)
gnutls_certificate_set_openpgp_key (gnutls_certificate_credentials_t
res, gnutls_openpgp_crt_t
crt, gnutls_openpgp_privkey_t
pkey)
gnutls_certificate_set_openpgp_key_file (gnutls_certificate_credentials_t
res, const char *
certfile, const char *
keyfile, gnutls_openpgp_crt_fmt_t
format)
Note however, that since functions like gnutls_certificate_set_x509_key_file2 may accept URLs that specify objects stored in token, another important function is gnutls_certificate_set_pin_function. That allows setting a callback function to retrieve a PIN if the input keys are protected by PIN by the token.
cred: is a
gnutls_certificate_credentials_t
structure.fn: A PIN callback
userdata: Data to be passed in the callback
This function will set a callback function to be used when required to access a protected object. This function overrides any other global PIN functions.
Note that this function must be called right after initialization to have effect.
Since: 3.1.0
If the imported keys and certificates need to be accessed before any TLS session is established, it is convenient to use gnutls_certificate_set_key in combination with gnutls_pcert_import_x509_raw and gnutls_privkey_import_x509_raw.
res: is a
gnutls_certificate_credentials_t
structure.names: is an array of DNS name of the certificate (NULL if none)
names_size: holds the size of the names list
pcert_list: contains a certificate list (path) for the specified private key
pcert_list_size: holds the size of the certificate list
key: is a
gnutls_privkey_t
keyThis function sets a certificate/private key pair in the gnutls_certificate_credentials_t structure. This function may be called more than once, in case multiple keys/certificates exist for the server. For clients that wants to send more than its own end entity certificate (e.g., also an intermediate CA cert) then put the certificate chain in
pcert_list
.Note that the
pcert_list
andkey
will become part of the credentials structure and must not be deallocated. They will be automatically deallocated when theres
structure is deinitialized.Returns:
GNUTLS_E_SUCCESS
(0) on success, or a negative error code.Since: 3.0
If multiple certificates are used with the functions above each client's request will be served with the certificate that matches the requested name (see Server name indication).
As an alternative to loading from files or buffers, a callback may be used for the server or the client to specify the certificate and the key at the handshake time. In that case a certificate should be selected according the peer's signature algorithm preferences. To get those preferences use gnutls_sign_algorithm_get_requested. Both functions are shown below.
gnutls_certificate_set_retrieve_function (gnutls_certificate_credentials_t
cred, gnutls_certificate_retrieve_function *
func)
gnutls_certificate_set_retrieve_function2 (gnutls_certificate_credentials_t
cred, gnutls_certificate_retrieve_function2 *
func)
gnutls_sign_algorithm_get_requested (gnutls_session_t
session, size_t
indx, gnutls_sign_algorithm_t *
algo)
c
The functions above do not handle the requested server name automatically.
A server would need to check the name requested by the client
using gnutls_server_name_get, and serve the appropriate
certificate. Note that some of these functions require the gnutls_pcert_st
structure to be
filled in. Helper functions to fill in the structure are listed below.
typedef struct gnutls_pcert_st { gnutls_pubkey_t pubkey; gnutls_datum_t cert; gnutls_certificate_type_t type; } gnutls_pcert_st;
gnutls_pcert_import_x509 (gnutls_pcert_st *
pcert, gnutls_x509_crt_t
crt, unsigned int
flags)
gnutls_pcert_import_openpgp (gnutls_pcert_st *
pcert, gnutls_openpgp_crt_t
crt, unsigned int
flags)
gnutls_pcert_import_x509_raw (gnutls_pcert_st *
pcert, const gnutls_datum_t *
cert, gnutls_x509_crt_fmt_t
format, unsigned int
flags)
gnutls_pcert_import_openpgp_raw (gnutls_pcert_st *
pcert, const gnutls_datum_t *
cert, gnutls_openpgp_crt_fmt_t
format, gnutls_openpgp_keyid_t
keyid, unsigned int
flags)
gnutls_pcert_deinit (gnutls_pcert_st *
pcert)
In a handshake, the negotiated cipher suite depends on the
certificate's parameters, so some key exchange methods might not be
available with all certificates. GnuTLS will disable
ciphersuites that are not compatible with the key, or the enabled
authentication methods. For example keys marked as sign-only, will
not be able to access the plain RSA ciphersuites, that require
decryption. It is not recommended to use RSA keys for both
signing and encryption. If possible use a different key for the
DHE-RSA
which uses signing and RSA
that requires decryption.
All the key exchange methods shown in Table 4.1 are
available in certificate authentication.
If a certificate is to be requested from the client during the handshake, the server will send a certificate request message. This behavior is controlled gnutls_certificate_server_set_request. The request contains a list of the acceptable by the server certificate signers. This list is constructed using the trusted certificate authorities of the server. In cases where the server supports a large number of certificate authorities it makes sense not to advertise all of the names to save bandwidth. That can be controlled using the function gnutls_certificate_send_x509_rdn_sequence. This however will have the side-effect of not restricting the client to certificates signed by server's acceptable signers.
session: is a
gnutls_session_t
structure.req: is one of GNUTLS_CERT_REQUEST, GNUTLS_CERT_REQUIRE
This function specifies if we (in case of a server) are going to send a certificate request message to the client. If
req
is GNUTLS_CERT_REQUIRE then the server will return an error if the peer does not provide a certificate. If you do not call this function then the client will not be asked to send a certificate.
session: is a pointer to a
gnutls_session_t
structure.status: is 0 or 1
If status is non zero, this function will order gnutls not to send the rdnSequence in the certificate request message. That is the server will not advertise its trusted CAs to the peer. If status is zero then the default behaviour will take effect, which is to advertise the server's trusted CAs.
This function has no effect in clients, and in authentication methods other than certificate with X.509 certificates.
Certificate verification is possible by loading the trusted authorities into the credentials structure by using the following functions, applicable to X.509 and OpenPGP certificates.
gnutls_certificate_set_x509_system_trust (gnutls_certificate_credentials_t
cred)
gnutls_certificate_set_x509_trust_file (gnutls_certificate_credentials_t
cred, const char *
cafile, gnutls_x509_crt_fmt_t
type)
gnutls_certificate_set_openpgp_keyring_file (gnutls_certificate_credentials_t
c, const char *
file, gnutls_openpgp_crt_fmt_t
format)
The peer's certificate is not automatically verified and one must call gnutls_certificate_verify_peers3 after a successful handshake to verify the certificate's signature and the owner of the certificate. The verification status returned can be printed using gnutls_certificate_verification_status_print.
Alternatively the verification can occur during the handshake by using gnutls_certificate_set_verify_function.
The functions above provide a brief verification output. If a detailed output is required one should call gnutls_certificate_get_peers to obtain the raw certificate of the peer and verify it using the functions discussed in X.509 certificates.
session: is a gnutls session
hostname: is the expected name of the peer; may be
NULL
status: is the output of the verification
This function will verify the peer's certificate and store the status in the
status
variable as a bitwise or'd gnutls_certificate_status_t values or zero if the certificate is trusted. Note that value instatus
is set only when the return value of this function is success (i.e, failure to trust a certificate does not imply a negative return value). The default verification flags used by this function can be overridden usinggnutls_certificate_set_verify_flags()
. See the documentation ofgnutls_certificate_verify_peers2()
for details in the verification process.If the
hostname
provided is non-NULL then this function will compare the hostname in the certificate against the given. The comparison will be accurate for ascii names; non-ascii names are compared byte-by-byte. If names do not match theGNUTLS_CERT_UNEXPECTED_OWNER
status flag will be set.In order to verify the purpose of the end-certificate (by checking the extended key usage), use
gnutls_certificate_verify_peers()
.Returns: a negative error code on error and
GNUTLS_E_SUCCESS
(0) on success.Since: 3.1.4
cred: is a
gnutls_certificate_credentials_t
structure.func: is the callback function
This function sets a callback to be called when peer's certificate has been received in order to verify it on receipt rather than doing after the handshake is completed.
The callback's function prototype is: int (*callback)(gnutls_session_t);
If the callback function is provided then gnutls will call it, in the handshake, just after the certificate message has been received. To verify or obtain the certificate the
gnutls_certificate_verify_peers2()
,gnutls_certificate_type_get()
,gnutls_certificate_get_peers()
functions can be used.The callback function should return 0 for the handshake to continue or non-zero to terminate.
Since: 2.10.0
The initialization functions in SRP credentials differ between client and server. Clients supporting SRP should set the username and password prior to connection, to the credentials structure. Alternatively gnutls_srp_set_client_credentials_function may be used instead, to specify a callback function that should return the SRP username and password. The callback is called once during the TLS handshake.
gnutls_srp_allocate_server_credentials (gnutls_srp_server_credentials_t *
sc)
gnutls_srp_allocate_client_credentials (gnutls_srp_client_credentials_t *
sc)
gnutls_srp_free_server_credentials (gnutls_srp_server_credentials_t
sc)
gnutls_srp_free_client_credentials (gnutls_srp_client_credentials_t
sc)
gnutls_srp_set_client_credentials (gnutls_srp_client_credentials_t
res, const char *
username, const char *
password)
cred: is a
gnutls_srp_server_credentials_t
structure.func: is the callback function
This function can be used to set a callback to retrieve the username and password for client SRP authentication. The callback's function form is:
int (*callback)(gnutls_session_t, char** username, char**password);
The
username
andpassword
must be allocated usinggnutls_malloc()
.username
andpassword
should be ASCII strings or UTF-8 strings prepared using the "SASLprep" profile of "stringprep".The callback function will be called once per handshake before the initial hello message is sent.
The callback should not return a negative error code the second time called, since the handshake procedure will be aborted.
The callback function should return 0 on success. -1 indicates an error.
In server side the default behavior of GnuTLS is to read the usernames and SRP verifiers from password files. These password file format is compatible the with the Stanford srp libraries format. If a different password file format is to be used, then gnutls_srp_set_server_credentials_function should be called, to set an appropriate callback.
res: is a
gnutls_srp_server_credentials_t
structure.password_file: is the SRP password file (tpasswd)
password_conf_file: is the SRP password conf file (tpasswd.conf)
This function sets the password files, in a
gnutls_srp_server_credentials_t
structure. Those password files hold usernames and verifiers and will be used for SRP authentication.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, or an error code.
cred: is a
gnutls_srp_server_credentials_t
structure.func: is the callback function
This function can be used to set a callback to retrieve the user's SRP credentials. The callback's function form is:
int (*callback)(gnutls_session_t, const char* username, gnutls_datum_t *salt, gnutls_datum_t *verifier, gnutls_datum_t *generator, gnutls_datum_t *prime);
username
contains the actual username. Thesalt
,verifier
,generator
andprime
must be filled in using thegnutls_malloc()
. For convenienceprime
andgenerator
may also be one of the static parameters defined in gnutls.h.Initially, the data field is NULL in every
gnutls_datum_t
structure that the callback has to fill in. When the callback is done GnuTLS deallocates all of those buffers which are non-NULL, regardless of the return value.In order to prevent attackers from guessing valid usernames, if a user does not exist, g and n values should be filled in using a random user's parameters. In that case the callback must return the special value (1). See
gnutls_srp_set_server_fake_salt_seed
too. If this is not required for your application, return a negative number from the callback to abort the handshake.The callback function will only be called once per handshake. The callback function should return 0 on success, while -1 indicates an error.
The initialization functions in PSK credentials differ between client and server.
gnutls_psk_allocate_server_credentials (gnutls_psk_server_credentials_t *
sc)
gnutls_psk_allocate_client_credentials (gnutls_psk_client_credentials_t *
sc)
gnutls_psk_free_server_credentials (gnutls_psk_server_credentials_t
sc)
gnutls_psk_free_client_credentials (gnutls_psk_client_credentials_t
sc)
Clients supporting PSK should supply the username and key before a TLS session is established. Alternatively gnutls_psk_set_client_credentials_function can be used to specify a callback function. This has the advantage that the callback will be called only if PSK has been negotiated.
gnutls_psk_set_client_credentials (gnutls_psk_client_credentials_t
res, const char *
username, const gnutls_datum_t *
key, gnutls_psk_key_flags
flags)
cred: is a
gnutls_psk_server_credentials_t
structure.func: is the callback function
This function can be used to set a callback to retrieve the username and password for client PSK authentication. The callback's function form is: int (*callback)(gnutls_session_t, char** username, gnutls_datum_t* key);
The
username
andkey
->data must be allocated usinggnutls_malloc()
.username
should be ASCII strings or UTF-8 strings prepared using the "SASLprep" profile of "stringprep".The callback function will be called once per handshake.
The callback function should return 0 on success. -1 indicates an error.
In server side the default behavior of GnuTLS is to read the usernames and PSK keys from a password file. The password file should contain usernames and keys in hexadecimal format. The name of the password file can be stored to the credentials structure by calling gnutls_psk_set_server_credentials_file. If a different password file format is to be used, then a callback should be set instead by gnutls_psk_set_server_credentials_function.
The server can help the client chose a suitable username and password, by sending a hint. Note that there is no common profile for the PSK hint and applications are discouraged to use it. A server, may specify the hint by calling gnutls_psk_set_server_credentials_hint. The client can retrieve the hint, for example in the callback function, using gnutls_psk_client_get_hint.
res: is a
gnutls_psk_server_credentials_t
structure.password_file: is the PSK password file (passwd.psk)
This function sets the password file, in a
gnutls_psk_server_credentials_t
structure. This password file holds usernames and keys and will be used for PSK authentication.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
gnutls_psk_set_server_credentials_function (gnutls_psk_server_credentials_t
cred, gnutls_psk_server_credentials_function *
func)
gnutls_psk_set_server_credentials_hint (gnutls_psk_server_credentials_t
res, const char *
hint)
gnutls_psk_client_get_hint (gnutls_session_t
session)
The key exchange methods for anonymous authentication might require Diffie-Hellman parameters to be generated by the server and associated with an anonymous credentials structure. Check Parameter generation for more information. The initialization functions for the credentials are shown below.
gnutls_anon_allocate_server_credentials (gnutls_anon_server_credentials_t *
sc)
gnutls_anon_allocate_client_credentials (gnutls_anon_client_credentials_t *
sc)
gnutls_anon_free_server_credentials (gnutls_anon_server_credentials_t
sc)
gnutls_anon_free_client_credentials (gnutls_anon_client_credentials_t
sc)
The next step is to setup the underlying transport layer details. The Berkeley sockets are implicitly used by GnuTLS, thus a call to gnutls_transport_set_int would be sufficient to specify the socket descriptor.
gnutls_transport_set_int (gnutls_session_t
session, int
i)
gnutls_transport_set_int2 (gnutls_session_t
session, int
recv_int, int
send_int)
If however another transport layer than TCP is selected, then a pointer should be used instead to express the parameter to be passed to custom functions. In that case the following functions should be used instead.
gnutls_transport_set_ptr (gnutls_session_t
session, gnutls_transport_ptr_t
ptr)
gnutls_transport_set_ptr2 (gnutls_session_t
session, gnutls_transport_ptr_t
recv_ptr, gnutls_transport_ptr_t
send_ptr)
Moreover all of the following push and pull callbacks should be set.
session: is a
gnutls_session_t
structure.push_func: a callback function similar to
write()
This is the function where you set a push function for gnutls to use in order to send data. If you are going to use berkeley style sockets, you do not need to use this function since the default send(2) will probably be ok. Otherwise you should specify this function for gnutls to be able to send data. The callback should return a positive number indicating the bytes sent, and -1 on error.
push_func
is of the form, ssize_t (*gnutls_push_func)(gnutls_transport_ptr_t, const void*, size_t);
session: is a
gnutls_session_t
structure.vec_func: a callback function similar to
writev()
Using this function you can override the default writev(2) function for gnutls to send data. Setting this callback instead of
gnutls_transport_set_push_function()
is recommended since it introduces less overhead in the TLS handshake process.
vec_func
is of the form, ssize_t (*gnutls_vec_push_func) (gnutls_transport_ptr_t, const giovec_t * iov, int iovcnt);Since: 2.12.0
session: is a
gnutls_session_t
structure.pull_func: a callback function similar to
read()
This is the function where you set a function for gnutls to receive data. Normally, if you use berkeley style sockets, do not need to use this function since the default recv(2) will probably be ok. The callback should return 0 on connection termination, a positive number indicating the number of bytes received, and -1 on error.
gnutls_pull_func
is of the form, ssize_t (*gnutls_pull_func)(gnutls_transport_ptr_t, void*, size_t);
session: is a
gnutls_session_t
structure.func: a callback function
This is the function where you set a function for gnutls to know whether data are ready to be received. It should wait for data a given time frame in milliseconds. The callback should return 0 on timeout, a positive number if data can be received, and -1 on error. You'll need to override this function if
select()
is not suitable for the provided transport calls.As with
select()
, if the timeout value is zero the callback should return zero if no data are immediately available.
gnutls_pull_timeout_func
is of the form, int (*gnutls_pull_timeout_func)(gnutls_transport_ptr_t, unsigned int ms);Since: 3.0
The functions above accept a callback function which
should return the number of bytes written, or -1 on
error and should set errno
appropriately.
In some environments, setting errno
is unreliable. For example
Windows have several errno variables in different CRTs, or in other
systems it may be a non thread-local variable. If this is a concern to
you, call gnutls_transport_set_errno with the intended errno
value instead of setting errno
directly.
session: is a
gnutls_session_t
structure.err: error value to store in session-specific errno variable.
Store
err
in the session-specific errno variable. Useful values forerr
is EAGAIN and EINTR, other values are treated will be treated as real errors in the push/pull function.This function is useful in replacement push and pull functions set by
gnutls_transport_set_push_function()
andgnutls_transport_set_pull_function()
under Windows, where the replacements may not have access to the sameerrno
variable that is used by GnuTLS (e.g., the application is linked to msvcr71.dll and gnutls is linked to msvcrt.dll).
GnuTLS currently only interprets the EINTR, EAGAIN and EMSGSIZE errno values and returns the corresponding GnuTLS error codes:
GNUTLS_E_INTERRUPTED
GNUTLS_E_AGAIN
GNUTLS_E_LARGE_PACKET
In the case of DTLS it is also desirable to override the generic
transport functions with functions that emulate the operation
of recvfrom
and sendto
. In addition
DTLS requires timers during the receive of a handshake
message, set using the gnutls_transport_set_pull_timeout_function
function. To check the retransmission timers the function
gnutls_dtls_get_timeout is provided, which returns the time
remaining until the next retransmission, or better the time until
gnutls_handshake should be called again.
session: is a
gnutls_session_t
structure.func: a callback function
This is the function where you set a function for gnutls to know whether data are ready to be received. It should wait for data a given time frame in milliseconds. The callback should return 0 on timeout, a positive number if data can be received, and -1 on error. You'll need to override this function if
select()
is not suitable for the provided transport calls.As with
select()
, if the timeout value is zero the callback should return zero if no data are immediately available.
gnutls_pull_timeout_func
is of the form, int (*gnutls_pull_timeout_func)(gnutls_transport_ptr_t, unsigned int ms);Since: 3.0
session: is a
gnutls_session_t
structure.This function will return the milliseconds remaining for a retransmission of the previously sent handshake message. This function is useful when DTLS is used in non-blocking mode, to estimate when to call
gnutls_handshake()
if no packets have been received.Returns: the remaining time in milliseconds.
Since: 3.0
GnuTLS can be used with asynchronous socket or event-driven programming.
The approach is similar to using Berkeley sockets under such an environment.
The blocking, due to network interaction, calls such as
gnutls_handshake, gnutls_record_recv,
can be set to non-blocking by setting the underlying sockets to non-blocking.
If other push and pull functions are setup, then they should behave the same
way as recv
and send
when used in a non-blocking
way, i.e., set errno to EAGAIN
. Since, during a TLS protocol session
GnuTLS does not block except for network interaction, the non blocking
EAGAIN
errno will be propagated and GnuTLS functions
will return the GNUTLS_E_AGAIN
error code. Such calls can be resumed the
same way as a system call would.
The only exception is gnutls_record_send,
which if interrupted subsequent calls need not to include the data to be
sent (can be called with NULL argument).
The select
system call can also be used in combination with the
GnuTLS functions. select
allows monitoring of sockets
and notifies on them being ready for reading or writing data. Note however
that this system call cannot notify on data present in GnuTLS
read buffers, it is only applicable to the kernel sockets API. Thus if
you are using it for reading from a GnuTLS session, make sure
that any cached data are read completely. That can be achieved by checking there
are no data waiting to be read (using gnutls_record_check_pending),
either before the select
system call, or after a call to
gnutls_record_recv. GnuTLS does not keep a write buffer,
thus when writing no additional actions are required.
Although in the TLS protocol implementation each call to receive or send function implies to restoring the same function that was interrupted, in the DTLS protocol this requirement isn't true. There are cases where a retransmission is required, which are indicated by a received message and thus gnutls_record_get_direction must be called to decide which direction to check prior to restoring a function call.
session: is a
gnutls_session_t
structure.This function provides information about the internals of the record protocol and is only useful if a prior gnutls function call (e.g.
gnutls_handshake()
) was interrupted for some reason, that is, if a function returnedGNUTLS_E_INTERRUPTED
orGNUTLS_E_AGAIN
. In such a case, you might want to callselect()
orpoll()
before calling the interrupted gnutls function again. To tell you whether a file descriptor should be selected for either reading or writing,gnutls_record_get_direction()
returns 0 if the interrupted function was trying to read data, and 1 if it was trying to write data.Returns: 0 if trying to read data, 1 if trying to write data.
Moreover, to prevent blocking from DTLS' retransmission timers to block a
handshake, the gnutls_init function should be called with the
GNUTLS_NONBLOCK
flag set (see Session initialization). In that
case, in order to be able to use the DTLS handshake timers, the function
gnutls_dtls_get_timeout should be used to estimate when to call
gnutls_handshake if no packets have been received.
Because datagram TLS can operate over connections where the client cannot be reliably verified, functionality in the form of cookies, is available to prevent denial of service attacks to servers. GnuTLS requires a server to generate a secret key that is used to sign a cookie12. That cookie is sent to the client using gnutls_dtls_cookie_send, and the client must reply using the correct cookie. The server side should verify the initial message sent by client using gnutls_dtls_cookie_verify. If successful the session should be initialized and associated with the cookie using gnutls_dtls_prestate_set, before proceeding to the handshake.
gnutls_key_generate (gnutls_datum_t *
key, unsigned int
key_size)
gnutls_dtls_cookie_send (gnutls_datum_t *
key, void *
client_data, size_t
client_data_size, gnutls_dtls_prestate_st *
prestate, gnutls_transport_ptr_t
ptr, gnutls_push_func
push_func)
gnutls_dtls_cookie_verify (gnutls_datum_t *
key, void *
client_data, size_t
client_data_size, void *
_msg, size_t
msg_size, gnutls_dtls_prestate_st *
prestate)
gnutls_dtls_prestate_set (gnutls_session_t
session, gnutls_dtls_prestate_st *
prestate)
Note that the above apply to server side only and they are not mandatory to be used. Not using them, however, allows denial of service attacks. The client side cookie handling is part of gnutls_handshake.
Datagrams are typically restricted by a maximum transfer unit (MTU). For that both client and server side should set the correct maximum transfer unit for the layer underneath GnuTLS. This will allow proper fragmentation of DTLS messages and prevent messages from being silently discarded by the transport layer. The “correct” maximum transfer unit can be obtained through a path MTU discovery mechanism [RFC4821].
gnutls_dtls_set_mtu (gnutls_session_t
session, unsigned int
mtu)
gnutls_dtls_get_mtu (gnutls_session_t
session)
gnutls_dtls_get_data_mtu (gnutls_session_t
session)
Once a session has been initialized and a network connection has been set up, TLS and DTLS protocols perform a handshake. The handshake is the actual key exchange.
session: is a
gnutls_session_t
structure.This function does the handshake of the TLS/SSL protocol, and initializes the TLS connection.
This function will fail if any problem is encountered, and will return a negative error code. In case of a client, if the client has asked to resume a session, but the server couldn't, then a full handshake will be performed.
The non-fatal errors expected by this function are:
GNUTLS_E_INTERRUPTED
,GNUTLS_E_AGAIN
, andGNUTLS_E_WARNING_ALERT_RECEIVED
. The former two interrupt the handshake procedure due to the lower layer being interrupted, and the latter because of an alert that may be sent by a server (it is always a good idea to check any received alerts). On these errors call this function again, until it returns 0; cf.gnutls_record_get_direction()
andgnutls_error_is_fatal()
.If this function is called by a server after a rehandshake request then
GNUTLS_E_GOT_APPLICATION_DATA
orGNUTLS_E_WARNING_ALERT_RECEIVED
may be returned. Note that these are non fatal errors, only in the specific case of a rehandshake. Their meaning is that the client rejected the rehandshake request or in the case ofGNUTLS_E_GOT_APPLICATION_DATA
it might also mean that some data were pending.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.
session: is a
gnutls_session_t
structure.ms: is a timeout value in milliseconds
This function sets the timeout for the handshake process to the provided value. Use an
ms
value of zero to disable timeout, orGNUTLS_DEFAULT_HANDSHAKE_TIMEOUT
for a reasonable default value.Since: 3.1.0
The handshake process doesn't ensure the verification of the peer's identity. When certificates are in use, this can be done, either after the handshake is complete, or during the handshake if gnutls_certificate_set_verify_function has been used. In both cases the gnutls_certificate_verify_peers2 function can be used to verify the peer's certificate (see Certificate authentication for more information).
gnutls_certificate_verify_peers2 (gnutls_session_t
session, unsigned int *
status)
Once the handshake is complete and peer's identity
has been verified data can be exchanged. The available
functions resemble the POSIX recv
and send
functions. It is suggested to use gnutls_error_is_fatal
to check whether the error codes returned by these functions are
fatal for the protocol or can be ignored.
session: is a
gnutls_session_t
structure.data: contains the data to send
data_size: is the length of the data
This function has the similar semantics with
send()
. The only difference is that it accepts a GnuTLS session, and uses different error codes. Note that if the send buffer is full,send()
will block this function. See thesend()
documentation for more information.You can replace the default push function which is
send()
, by usinggnutls_transport_set_push_function()
.If the EINTR is returned by the internal push function then
GNUTLS_E_INTERRUPTED
will be returned. IfGNUTLS_E_INTERRUPTED
orGNUTLS_E_AGAIN
is returned, you must call this function again, with the exact same parameters; alternatively you could provide aNULL
pointer for data, and 0 for size. cf.gnutls_record_get_direction()
.Note that in DTLS this function will return the
GNUTLS_E_LARGE_PACKET
error code if the send data exceed the data MTU value - as returned bygnutls_dtls_get_data_mtu()
. The errno value EMSGSIZE also maps toGNUTLS_E_LARGE_PACKET
. Note that since 3.2.13 this function can be called under cork in DTLS mode, and will refuse to send data over the MTU size by returningGNUTLS_E_LARGE_PACKET
.Returns: The number of bytes sent, or a negative error code. The number of bytes sent might be less than
data_size
. The maximum number of bytes this function can send in a single call depends on the negotiated maximum record size.
session: is a
gnutls_session_t
structure.data: the buffer that the data will be read into
data_size: the number of requested bytes
This function has the similar semantics with
recv()
. The only difference is that it accepts a GnuTLS session, and uses different error codes. In the special case that a server requests a renegotiation, the client may receive an error code ofGNUTLS_E_REHANDSHAKE
. This message may be simply ignored, replied with an alertGNUTLS_A_NO_RENEGOTIATION
, or replied with a new handshake, depending on the client's will. IfEINTR
is returned by the internal push function (the default isrecv()
) thenGNUTLS_E_INTERRUPTED
will be returned. IfGNUTLS_E_INTERRUPTED
orGNUTLS_E_AGAIN
is returned, you must call this function again to get the data. See alsognutls_record_get_direction()
. A server may also receiveGNUTLS_E_REHANDSHAKE
when a client has initiated a handshake. In that case the server can only initiate a handshake or terminate the connection.Returns: The number of bytes received and zero on EOF (for stream connections). A negative error code is returned in case of an error. The number of bytes received might be less than the requested
data_size
.
error: is a GnuTLS error code, a negative error code
If a GnuTLS function returns a negative error code you may feed that value to this function to see if the error condition is fatal to a TLS session (i.e., must be terminated).
Note that you may also want to check the error code manually, since some non-fatal errors to the protocol (such as a warning alert or a rehandshake request) may be fatal for your program.
This function is only useful if you are dealing with errors from functions that relate to a TLS session (e.g., record layer or handshake layer handling functions).
Returns: zero on non fatal errors or positive
error
values. Non-zero on fatal error codes.
Although, in the TLS protocol the receive function can be called at any time, when DTLS is used the GnuTLS receive functions must be called once a message is available for reading, even if no data are expected. This is because in DTLS various (internal) actions may be required due to retransmission timers. Moreover, an extended receive function is shown below, which allows the extraction of the message's sequence number. Due to the unreliable nature of the protocol, this field allows distinguishing out-of-order messages.
session: is a
gnutls_session_t
structure.data: the buffer that the data will be read into
data_size: the number of requested bytes
seq: is the packet's 64-bit sequence number. Should have space for 8 bytes.
This function is the same as
gnutls_record_recv()
, except that it returns in addition to data, the sequence number of the data. This is useful in DTLS where record packets might be received out-of-order. The returned 8-byte sequence number is an integer in big-endian format and should be treated as a unique message identification.Returns: The number of bytes received and zero on EOF. A negative error code is returned in case of an error. The number of bytes received might be less than
data_size
.Since: 3.0
The gnutls_record_check_pending helper function is available to
allow checking whether data are available to be read in a GnuTLS session
buffers. Note that this function complements but does not replace select
,
i.e., gnutls_record_check_pending reports no data to be read, select
should be called to check for data in the network buffers.
session: is a
gnutls_session_t
structure.This function checks if there are unread data in the gnutls buffers. If the return value is non-zero the next call to
gnutls_record_recv()
is guaranteed not to block.Returns: Returns the size of the data or zero.
gnutls_record_get_direction (gnutls_session_t
session)
Once a TLS or DTLS session is no longer needed, it is recommended to use gnutls_bye to terminate the session. That way the peer is notified securely about the intention of termination, which allows distinguishing it from a malicious connection termination. A session can be deinitialized with the gnutls_deinit function.
session: is a
gnutls_session_t
structure.how: is an integer
Terminates the current TLS/SSL connection. The connection should have been initiated using
gnutls_handshake()
.how
should be one ofGNUTLS_SHUT_RDWR
,GNUTLS_SHUT_WR
.In case of
GNUTLS_SHUT_RDWR
the TLS session gets terminated and further receives and sends will be disallowed. If the return value is zero you may continue using the underlying transport layer.GNUTLS_SHUT_RDWR
sends an alert containing a close request and waits for the peer to reply with the same message.In case of
GNUTLS_SHUT_WR
the TLS session gets terminated and further sends will be disallowed. In order to reuse the connection you should wait for an EOF from the peer.GNUTLS_SHUT_WR
sends an alert containing a close request.Note that not all implementations will properly terminate a TLS connection. Some of them, usually for performance reasons, will terminate only the underlying transport layer, and thus not distinguishing between a malicious party prematurely terminating the connection and normal termination.
This function may also return
GNUTLS_E_AGAIN
orGNUTLS_E_INTERRUPTED
; cf.gnutls_record_get_direction()
.Returns:
GNUTLS_E_SUCCESS
on success, or an error code, see function documentation for entire semantics.
session: is a
gnutls_session_t
structure.This function clears all buffers associated with the
session
. This function will also remove session data from the session database if the session was terminated abnormally.
Although gnutls_record_send is sufficient to transmit data to the peer, when many small chunks of data are to be transmitted it is inefficient and wastes bandwidth due to the TLS record overhead. In that case it is preferrable to combine the small chunks before transmission. The following functions provide that functionality.
session: is a
gnutls_session_t
structure.If called
gnutls_record_send()
will no longer send partial records. All queued records will be sent whengnutls_uncork()
is called, or when the maximum record size is reached.This function is safe to use with DTLS after GnuTLS 3.3.0.
Since: 3.1.9
session: is a
gnutls_session_t
structure.flags: Could be zero or
GNUTLS_RECORD_WAIT
This resets the effect of
gnutls_cork()
, and flushes any pending data. If theGNUTLS_RECORD_WAIT
flag is specified then this function will block until the data is sent or a fatal error occurs (i.e., the function will retry onGNUTLS_E_AGAIN
andGNUTLS_E_INTERRUPTED
).If the flag
GNUTLS_RECORD_WAIT
is not specified and the function is interrupted then theGNUTLS_E_AGAIN
orGNUTLS_E_INTERRUPTED
errors will be returned. To obtain the data left in the corked buffer usegnutls_record_check_corked()
.Returns: On success the number of transmitted data is returned, or otherwise a negative error code.
Since: 3.1.9
During a TLS connection alert messages may be exchanged by the
two peers. Those messages may be fatal, meaning the connection
must be terminated afterwards, or warning when something needs
to be reported to the peer, but without interrupting the session.
The error codes GNUTLS_E_WARNING_ALERT_RECEIVED
or GNUTLS_E_FATAL_ALERT_RECEIVED
signal those alerts
when received, and may be returned by all GnuTLS functions that receive
data from the peer, being gnutls_handshake and gnutls_record_recv.
If those error codes are received the alert and its level should be logged or reported to the peer using the functions below.
session: is a
gnutls_session_t
structure.This function will return the last alert number received. This function should be called when
GNUTLS_E_WARNING_ALERT_RECEIVED
orGNUTLS_E_FATAL_ALERT_RECEIVED
errors are returned by a gnutls function. The peer may send alerts if he encounters an error. If no alert has been received the returned value is undefined.Returns: the last alert received, a
gnutls_alert_description_t
value.
alert: is an alert number.
This function will return a string that describes the given alert number, or
NULL
. Seegnutls_alert_get()
.Returns: string corresponding to
gnutls_alert_description_t
value.
The peer may also be warned or notified of a fatal issue by using one of the functions below. All the available alerts are listed in The Alert Protocol.
session: is a
gnutls_session_t
structure.level: is the level of the alert
desc: is the alert description
This function will send an alert to the peer in order to inform him of something important (eg. his Certificate could not be verified). If the alert level is Fatal then the peer is expected to close the connection, otherwise he may ignore the alert and continue.
The error code of the underlying record send function will be returned, so you may also receive
GNUTLS_E_INTERRUPTED
orGNUTLS_E_AGAIN
as well.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
err: is a negative integer
level: the alert level will be stored there
Get an alert depending on the error code returned by a gnutls function. All alerts sent by this function should be considered fatal. The only exception is when
err
isGNUTLS_E_REHANDSHAKE
, where a warning alert should be sent to the peer indicating that no renegotiation will be performed.If there is no mapping to a valid alert the alert to indicate internal error is returned.
Returns: the alert code to use for a particular error code.
The GnuTLS priority strings specify the TLS session's handshake algorithms and options in a compact, easy-to-use format. That string may contain a single initial keyword such as in tab:prio-keywords and may be followed by additional algorithm or special keywords. Note that their description is intentionally avoiding specific algorithm details, as the priority strings are not constant between gnutls versions (they are periodically updated to account for cryptographic advances while providing compatibility with old clients and servers).
gnutls_priority_set_direct (gnutls_session_t
session, const char *
priorities, const char **
err_pos)
gnutls_priority_set (gnutls_session_t
session, gnutls_priority_t
priority)
Keyword | Description
|
---|---|
@KEYWORD |
Means that a compile-time specified system configuration file13
will be used to expand the provided keyword. That is used to impose system-specific policies.
It may be followed by additional options that will be appended to the
system string (e.g., "@SYSTEM:+SRP"). The system file should have the
format 'KEYWORD=VALUE', e.g., 'SYSTEM=NORMAL:-ARCFOUR-128'.
|
PERFORMANCE |
All the known to be secure ciphersuites are enabled,
limited to 128 bit ciphers and sorted by terms of speed
performance. The message authenticity security level is of 64 bits or more,
and the certificate verification profile is set to GNUTLS_PROFILE_LOW (80-bits).
|
NORMAL |
Means all the known to be secure ciphersuites. The ciphers are sorted by security
margin, although the 256-bit ciphers are included as a fallback only.
The message authenticity security level is of 64 bits or more,
and the certificate verification profile is set to GNUTLS_PROFILE_LOW (80-bits).
This priority string implicitly enables ECDHE and DHE. The ECDHE ciphersuites are placed first in the priority order, but due to compatibility issues with the DHE ciphersuites they are placed last in the priority order, after the plain RSA ciphersuites. |
LEGACY |
This sets the NORMAL settings that were used for GnuTLS 3.2.x or earlier. There is
no verification profile set, and the allowed DH primes are considered
weak today (but are often used by misconfigured servers).
|
PFS |
Means all the known to be secure ciphersuites that support perfect forward
secrecy (ECDHE and DHE). The ciphers are sorted by security
margin, although the 256-bit ciphers are included as a fallback only.
The message authenticity security level is of 80 bits or more,
and the certificate verification profile is set to GNUTLS_PROFILE_LOW (80-bits).
This option is available since 3.2.4 or later.
|
SECURE128 |
Means all known to be secure ciphersuites that offer a
security level 128-bit or more.
The message authenticity security level is of 80 bits or more,
and the certificate verification profile is set to GNUTLS_PROFILE_LOW (80-bits).
|
SECURE192 |
Means all the known to be secure ciphersuites that offer a
security level 192-bit or more.
The message authenticity security level is of 128 bits or more,
and the certificate verification profile is set to GNUTLS_PROFILE_HIGH (128-bits).
|
SECURE256 |
Currently alias for SECURE192.
|
SUITEB128 |
Means all the NSA Suite B cryptography (RFC5430) ciphersuites
with an 128 bit security level, as well as the enabling of the corresponding
verification profile.
|
SUITEB192 |
Means all the NSA Suite B cryptography (RFC5430) ciphersuites
with an 192 bit security level, as well as the enabling of the corresponding
verification profile.
|
EXPORT |
This priority string should be treated as deprecated.
GnuTLS no longer negotiates 40-bit ciphers.
|
NONE |
Means nothing is enabled. This disables even protocols and
compression methods. It should be followed by the
algorithms to be enabled.
|
Table 6.3: Supported initial keywords.
Unless the initial keyword is "NONE" the defaults (in preference order) are for TLS protocols TLS 1.2, TLS1.1, TLS1.0; for compression NULL; for certificate types X.509. In key exchange algorithms when in NORMAL or SECURE levels the perfect forward secrecy algorithms take precedence of the other protocols. In all cases all the supported key exchange algorithms are enabled.
Note that the SECURE levels distinguish between overall security level and message authenticity security level. That is because the message authenticity security level requires the adversary to break the algorithms at real-time during the protocol run, whilst the overall security level refers to off-line adversaries (e.g. adversaries breaking the ciphertext years after it was captured).
The NONE keyword, if used, must followed by keywords specifying the algorithms and protocols to be enabled. The other initial keywords do not require, but may be followed by such keywords. All level keywords can be combined, and for example a level of "SECURE256:+SECURE128" is allowed.
The order with which every algorithm or protocol is specified is significant. Algorithms specified before others will take precedence. The supported algorithms and protocols are shown in tab:prio-algorithms. To avoid collisions in order to specify a compression algorithm in the priority string you have to prefix it with "COMP-", protocol versions with "VERS-", signature algorithms with "SIGN-" and certificate types with "CTYPE-". All other algorithms don't need a prefix. Each specified keyword can be prefixed with any of the following characters.
Type | Keywords
|
---|---|
Ciphers |
AES-128-CBC, AES-256-CBC, AES-128-GCM, CAMELLIA-128-CBC,
CAMELLIA-256-CBC, ARCFOUR-128, 3DES-CBC ARCFOUR-40. Catch all
name is CIPHER-ALL which will add all the algorithms from NORMAL
priority.
|
Key exchange |
RSA, DHE-RSA, DHE-DSS, SRP, SRP-RSA, SRP-DSS,
PSK, DHE-PSK, ECDHE-RSA, ANON-ECDH, ANON-DH. The
Catch all name is KX-ALL which will add all the algorithms from NORMAL
priority.
Add |
MAC |
MD5, SHA1, SHA256, SHA384, AEAD (used with
GCM ciphers only). All algorithms from NORMAL priority can be accessed with MAC-ALL.
|
Compression algorithms |
COMP-NULL, COMP-DEFLATE. Catch all is COMP-ALL.
|
TLS versions |
VERS-TLS1.0, VERS-TLS1.1, VERS-TLS1.2,
VERS-DTLS1.0, VERS-DTLS1.2.
Catch all is VERS-TLS-ALL and VERS-DTLS-ALL.
|
Signature algorithms |
SIGN-RSA-SHA1, SIGN-RSA-SHA224,
SIGN-RSA-SHA256, SIGN-RSA-SHA384, SIGN-RSA-SHA512, SIGN-DSA-SHA1,
SIGN-DSA-SHA224, SIGN-DSA-SHA256, SIGN-RSA-MD5. Catch all
is SIGN-ALL. This is only valid for TLS 1.2 and later.
|
Elliptic curves |
CURVE-SECP192R1, CURVE-SECP224R1, CURVE-SECP256R1, CURVE-SECP384R1, CURVE-SECP521R1. Catch all is CURVE-ALL.
|
Table 6.4: The supported algorithm keywords in priority strings.
Note that the DHE key exchange methods are generally slower14 than their elliptic curves counterpart (ECDHE). Moreover the plain Diffie-Hellman key exchange requires parameters to be generated and associated with a credentials structure by the server (see Parameter generation).
The available special keywords are shown in tab:prio-special1 and tab:prio-special2.
Keyword | Description
|
---|---|
%COMPAT |
will enable compatibility mode. It might mean that violations
of the protocols are allowed as long as maximum compatibility with
problematic clients and servers is achieved. More specifically this
string would disable TLS record random padding, tolerate packets
over the maximum allowed TLS record, and add a padding to TLS Client
Hello packet to prevent it being in the 256-512 range which is known
to be causing issues with a commonly used firewall.
|
%DUMBFW |
will add a private extension with bogus data that make the client
hello exceed 512 bytes. This avoids a black hole behavior in some
firewalls. This is a non-standard TLS extension, use with care.
|
%NO_EXTENSIONS |
will prevent the sending of any TLS extensions in client side. Note
that TLS 1.2 requires extensions to be used, as well as safe
renegotiation thus this option must be used with care.
|
%SERVER_PRECEDENCE |
The ciphersuite will be selected according to server priorities
and not the client's.
|
%SSL3_RECORD_VERSION |
will use SSL3.0 record version in client hello.
This is the default.
|
%LATEST_RECORD_VERSION |
will use the latest TLS version record version in client hello.
|
Table 6.5: Special priority string keywords.
Keyword | Description
|
---|---|
%STATELESS_COMPRESSION |
will disable keeping state across records when compressing. This may
help to mitigate attacks when compression is used but an attacker
is in control of input data. This has to be used only when the
data that are possibly controlled by an attacker are placed in
separate records.
|
%DISABLE_WILDCARDS |
will disable matching wildcards when comparing hostnames
in certificates.
|
%DISABLE_SAFE_RENEGOTIATION |
will completely disable safe renegotiation
completely. Do not use unless you know what you are doing.
|
%UNSAFE_RENEGOTIATION |
will allow handshakes and re-handshakes
without the safe renegotiation extension. Note that for clients
this mode is insecure (you may be under attack), and for servers it
will allow insecure clients to connect (which could be fooled by an
attacker). Do not use unless you know what you are doing and want
maximum compatibility.
|
%PARTIAL_RENEGOTIATION |
will allow initial handshakes to proceed,
but not re-handshakes. This leaves the client vulnerable to attack,
and servers will be compatible with non-upgraded clients for
initial handshakes. This is currently the default for clients and
servers, for compatibility reasons.
|
%SAFE_RENEGOTIATION |
will enforce safe renegotiation. Clients and
servers will refuse to talk to an insecure peer. Currently this
causes interoperability problems, but is required for full protection.
|
%VERIFY_ALLOW_SIGN_RSA_MD5 |
will allow RSA-MD5 signatures in certificate chains.
|
%VERIFY_DISABLE_CRL_CHECKS |
will disable CRL or OCSP checks in the verification of the certificate chain.
|
%VERIFY_ALLOW_X509_V1_CA_CRT |
will allow V1 CAs in chains.
|
%PROFILE_(LOW|LEGACY|MEDIUM|HIGH|ULTRA) |
require a certificate verification profile the corresponds to the specified
security level, see tab:key-sizes for the mappings to values.
|
%PROFILE_(SUITEB128|SUITEB192) |
require a certificate verification profile the corresponds to SUITEB. Note
that an initial keyword that enables SUITEB automatically sets the profile.
|
Table 6.6: More priority string keywords.
Finally the ciphersuites enabled by any priority string can be
listed using the gnutls-cli
application (see gnutls-cli Invocation),
or by using the priority functions as in Listing the ciphersuites in a priority string.
Example priority strings are:
The system imposed security level: "SYSTEM" The default priority without the HMAC-MD5: "NORMAL:-MD5" Specifying RSA with AES-128-CBC: "NONE:+VERS-TLS-ALL:+MAC-ALL:+RSA:+AES-128-CBC:+SIGN-ALL:+COMP-NULL" Specifying the defaults except ARCFOUR-128: "NORMAL:-ARCFOUR-128" Enabling the 128-bit secure ciphers, while disabling TLS 1.0 and enabling compression: "SECURE128:-VERS-TLS1.0:+COMP-DEFLATE" Enabling the 128-bit and 192-bit secure ciphers, while disabling all TLS versions except TLS 1.2: "SECURE128:+SECURE192:-VERS-TLS-ALL:+VERS-TLS1.2"
Because many algorithms are involved in TLS, it is not easy to set a consistent security level. For this reason in tab:key-sizes we present some correspondence between key sizes of symmetric algorithms and public key algorithms based on [ECRYPT]. Those can be used to generate certificates with appropriate key sizes as well as select parameters for Diffie-Hellman and SRP authentication.
Security bits | RSA, DH and SRP parameter size | ECC key size | Security parameter | Description
|
---|---|---|---|---|
<72 | <1008 | <160 | INSECURE
| Considered to be insecure
|
64 | 768 | 128 | VERY WEAK
| Short term protection against individuals
|
72 | 1008 | 160 | WEAK
| Short term protection against small organizations
|
80 | 1024 | 160 | LOW
| Very short term protection against agencies (corresponds to ENISA legacy level)
|
96 | 1776 | 192 | LEGACY
| Legacy standard level
|
112 | 2048 | 224 | MEDIUM
| Medium-term protection
|
128 | 3072 | 256 | HIGH
| Long term protection
|
256 | 15424 | 512 | ULTRA
| Foreseeable future
|
Table 6.7: Key sizes and security parameters.
The first column provides a security parameter in a number of bits. This
gives an indication of the number of combinations to be tried by an adversary
to brute force a key. For example to test all possible keys in a 112 bit security parameter
2^112 combinations have to be tried. For today's technology this is infeasible.
The next two columns correlate the security
parameter with actual bit sizes of parameters for DH, RSA, SRP and ECC algorithms.
A mapping to gnutls_sec_param_t
value is given for each security parameter, on
the next column, and finally a brief description of the level.
Note, however, that the values suggested here are nothing more than an educated guess that is valid today. There are no guarantees that an algorithm will remain unbreakable or that these values will remain constant in time. There could be scientific breakthroughs that cannot be predicted or total failure of the current public key systems by quantum computers. On the other hand though the cryptosystems used in TLS are selected in a conservative way and such catastrophic breakthroughs or failures are believed to be unlikely. The NIST publication SP 800-57 [NISTSP80057] contains a similar table.
When using GnuTLS and a decision on bit sizes for a public key algorithm is required, use of the following functions is recommended:
algo: is a public key algorithm
param: is a security parameter
When generating private and public key pairs a difficult question is which size of "bits" the modulus will be in RSA and the group size in DSA. The easy answer is 1024, which is also wrong. This function will convert a human understandable security parameter to an appropriate size for the specific algorithm.
Returns: The number of bits, or (0).
Since: 2.12.0
algo: is a public key algorithm
bits: is the number of bits
This is the inverse of
gnutls_sec_param_to_pk_bits()
. Given an algorithm and the number of bits, it will return the security parameter. This is a rough indication.Returns: The security parameter.
Since: 2.12.0
Those functions will convert a human understandable security parameter
of gnutls_sec_param_t
type, to a number of bits suitable for a public
key algorithm.
gnutls_sec_param_get_name (gnutls_sec_param_t
param)
The following functions will set the minimum acceptable group size for Diffie-Hellman and SRP authentication.
gnutls_dh_set_prime_bits (gnutls_session_t
session, unsigned int
bits)
gnutls_srp_set_prime_bits (gnutls_session_t
session, unsigned int
bits)
To reduce time and roundtrips spent in a handshake the client can request session resumption from a server that previously shared a session with the client. For that the client has to retrieve and store the session parameters. Before establishing a new session to the same server the parameters must be re-associated with the GnuTLS session using gnutls_session_set_data.
gnutls_session_get_data2 (gnutls_session_t
session, gnutls_datum_t *
data)
gnutls_session_get_id2 (gnutls_session_t
session, gnutls_datum_t *
session_id)
gnutls_session_set_data (gnutls_session_t
session, const void *
session_data, size_t
session_data_size)
Keep in mind that sessions will be expired after some time, depending on the server, and a server may choose not to resume a session even when requested to. The expiration is to prevent temporal session keys from becoming long-term keys. Also note that as a client you must enable, using the priority functions, at least the algorithms used in the last session.
session: is a
gnutls_session_t
structure.Check whether session is resumed or not.
Returns: non zero if this session is resumed, or a zero if this is a new session.
In order to support resumption a server can store the session security parameters in a local database or by using session tickets (see Session tickets) to delegate storage to the client. Because session tickets might not be supported by all clients, servers could combine the two methods.
A storing server needs to specify callback functions to store, retrieve and delete session data. These can be registered with the functions below. The stored sessions in the database can be checked using gnutls_db_check_entry for expiration.
gnutls_db_set_retrieve_function (gnutls_session_t
session, gnutls_db_retr_func
retr_func)
gnutls_db_set_store_function (gnutls_session_t
session, gnutls_db_store_func
store_func)
gnutls_db_set_ptr (gnutls_session_t
session, void *
ptr)
gnutls_db_set_remove_function (gnutls_session_t
session, gnutls_db_remove_func
rem_func)
gnutls_db_check_entry (gnutls_session_t
session, gnutls_datum_t
session_entry)
A server utilizing tickets should generate ticket encryption and authentication keys using gnutls_session_ticket_key_generate. Those keys should be associated with the GnuTLS session using gnutls_session_ticket_enable_server.
session: is a
gnutls_session_t
structure.key: key to encrypt session parameters.
Request that the server should attempt session resumption using SessionTicket.
key
must be initialized withgnutls_session_ticket_key_generate()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, or an error code.Since: 2.10.0
key: is a pointer to a
gnutls_datum_t
which will contain a newly created key.Generate a random key to encrypt security parameters within SessionTicket.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, or an error code.Since: 2.10.0
session: is a
gnutls_session_t
structure.Check whether the client has asked for session resumption. This function is valid only on server side.
Returns: non zero if session resumption was asked, or a zero if not.
A server enabling both session tickets and a storage for session data would use session tickets when clients support it and the storage otherwise.
In this section the functionality for additional certificate verification methods is listed. These methods are intended to be used in addition to normal PKI verification, in order to reduce the risk of a compromised CA being undetected.
The GnuTLS library includes functionlity to use an SSH-like trust on first use authentication. The available functions to store and verify public keys are listed below.
db_name: A file specifying the stored keys (use NULL for the default)
tdb: A storage structure or NULL to use the default
host: The peer's name
service: non-NULL if this key is specific to a service (e.g. http)
cert_type: The type of the certificate
cert: The raw (der) data of the certificate
flags: should be 0.
This function will try to verify the provided (raw or DER-encoded) certificate using a list of stored public keys. The
service
field if non-NULL should be a port number.The
retrieve
variable if non-null specifies a custom backend for the retrieval of entries. If it is NULL then the default file backend will be used. In POSIX-like systems the file backend uses the $HOME/.gnutls/known_hosts file.Note that if the custom storage backend is provided the retrieval function should return
GNUTLS_E_CERTIFICATE_KEY_MISMATCH
if the host/service pair is found but key doesn't match,GNUTLS_E_NO_CERTIFICATE_FOUND
if no such host/service with the given key is found, and 0 if it was found. The storage function should return 0 on success.Returns: If no associated public key is found then
GNUTLS_E_NO_CERTIFICATE_FOUND
will be returned. If a key is found but does not matchGNUTLS_E_CERTIFICATE_KEY_MISMATCH
is returned. On success,GNUTLS_E_SUCCESS
(0) is returned, or a negative error value on other errors.Since: 3.0.13
db_name: A file specifying the stored keys (use NULL for the default)
tdb: A storage structure or NULL to use the default
host: The peer's name
service: non-NULL if this key is specific to a service (e.g. http)
cert_type: The type of the certificate
cert: The data of the certificate
expiration: The expiration time (use 0 to disable expiration)
flags: should be 0.
This function will store the provided (raw or DER-encoded) certificate to the list of stored public keys. The key will be considered valid until the provided expiration time.
The
store
variable if non-null specifies a custom backend for the storage of entries. If it is NULL then the default file backend will be used.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0.13
In addition to the above the gnutls_store_commitment can be used to implement a key-pinning architecture as in [KEYPIN]. This provides a way for web server to commit on a public key that is not yet active.
db_name: A file specifying the stored keys (use NULL for the default)
tdb: A storage structure or NULL to use the default
host: The peer's name
service: non-NULL if this key is specific to a service (e.g. http)
hash_algo: The hash algorithm type
hash: The raw hash
expiration: The expiration time (use 0 to disable expiration)
flags: should be 0.
This function will store the provided hash commitment to the list of stored public keys. The key with the given hash will be considered valid until the provided expiration time.
The
store
variable if non-null specifies a custom backend for the storage of entries. If it is NULL then the default file backend will be used.Note that this function is not thread safe with the default backend.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
The storage and verification functions may be used with the default text file based back-end, or another back-end may be specified. That should contain storage and retrieval functions and specified as below.
gnutls_tdb_init (gnutls_tdb_t *
tdb)
gnutls_tdb_deinit (gnutls_tdb_t
tdb)
gnutls_tdb_set_verify_func (gnutls_tdb_t
tdb, gnutls_tdb_verify_func
verify)
gnutls_tdb_set_store_func (gnutls_tdb_t
tdb, gnutls_tdb_store_func
store)
gnutls_tdb_set_store_commitment_func (gnutls_tdb_t
tdb, gnutls_tdb_store_commitment_func
cstore)
Since the DANE library is not included in GnuTLS it requires programs to be linked against it. This can be achieved with the following commands.
gcc -o foo foo.c `pkg-config gnutls-dane --cflags --libs`
When a program uses the GNU autoconf system, then the following line or similar can be used to detect the presence of the library.
PKG_CHECK_MODULES([LIBDANE], [gnutls-dane >= 3.0.0]) AC_SUBST([LIBDANE_CFLAGS]) AC_SUBST([LIBDANE_LIBS])
The high level functionality provided by the DANE library is shown below.
s: A DANE state structure (may be NULL)
chain: A certificate chain
chain_size: The size of the chain
chain_type: The type of the certificate chain
hostname: The hostname associated with the chain
proto: The protocol of the service connecting (e.g. tcp)
port: The port of the service connecting (e.g. 443)
sflags: Flags for the the initialization of
s
(if NULL)vflags: Verification flags; an OR'ed list of
dane_verify_flags_t
.verify: An OR'ed list of
dane_verify_status_t
.This function will verify the given certificate chain against the CA constrains and/or the certificate available via DANE. If no information via DANE can be obtained the flag
DANE_VERIFY_NO_DANE_INFO
is set. If a DNSSEC signature is not available for the DANE record then the verify flagDANE_VERIFY_NO_DNSSEC_DATA
is set.Note that the CA constraint only applies for the directly certifying CA and does not account for long CA chains. Moreover this function does not validate the provided chain.
Due to the many possible options of DANE, there is no single threat model countered. When notifying the user about DANE verification results it may be better to mention: DANE verification did not reject the certificate, rather than mentioning a successful DANE verication.
If the
q
parameter is provided it will be used for caching entries.Returns: On success,
DANE_E_SUCCESS
(0) is returned, otherwise a negative error value.
dane_verify_session_crt (dane_state_t
s, gnutls_session_t
session, const char *
hostname, const char *
proto, unsigned int
port, unsigned int
sflags, unsigned int
vflags, unsigned int *
verify)
dane_strerror (int
error)
Note that the dane_state_t
structure that is accepted by both
verification functions is optional. It is required when many queries
are performed to facilitate caching.
The following flags are returned by the verify functions to
indicate the status of the verification.
DANE_VERIFY_CA_CONSTRAINTS_VIOLATED
DANE_VERIFY_CERT_DIFFERS
DANE_VERIFY_UNKNOWN_DANE_INFO
Figure 6.2: The DANE verification status flags.
In order to generate a DANE TLSA entry to use in a DNS server you may use danetool (see danetool Invocation).
Several TLS ciphersuites require additional parameters that need to be generated or provided by the application. The Diffie-Hellman based ciphersuites (ANON-DH or DHE), require the group parameters to be provided. Those can either be be generated on the fly using gnutls_dh_params_generate2 or imported from pregenerated data using gnutls_dh_params_import_pkcs3. The parameters can be used in a TLS session by calling gnutls_certificate_set_dh_params or gnutls_anon_set_server_dh_params for anonymous sessions.
gnutls_dh_params_generate2 (gnutls_dh_params_t
dparams, unsigned int
bits)
gnutls_dh_params_import_pkcs3 (gnutls_dh_params_t
params, const gnutls_datum_t *
pkcs3_params, gnutls_x509_crt_fmt_t
format)
gnutls_certificate_set_dh_params (gnutls_certificate_credentials_t
res, gnutls_dh_params_t
dh_params)
gnutls_anon_set_server_dh_params (gnutls_anon_server_credentials_t
res, gnutls_dh_params_t
dh_params)
Due to the time-consuming calculations required for the generation
of Diffie-Hellman parameters we suggest against performing generation
of them within an application. The certtool
tool can be used to
generate or export known safe values that can be stored in code
or in a configuration file to provide the ability to replace. We also
recommend the usage of gnutls_sec_param_to_pk_bits
(see Selecting cryptographic key sizes) to determine
the bit size of the generated parameters.
Note that the information stored in the generated PKCS #3 structure
changed with GnuTLS 3.0.9. Since that version the privateValueLength
member of the structure is set, allowing the server utilizing the
parameters to use keys of the size of the security parameter. This
provides better performance in key exchange.
To allow renewal of the parameters within an application without accessing the credentials, which are a shared structure, an alternative interface is available using a callback function.
res: is a gnutls_certificate_credentials_t structure
func: is the function to be called
This function will set a callback in order for the server to get the Diffie-Hellman or RSA parameters for certificate authentication. The callback should return
GNUTLS_E_SUCCESS
(0) on success.
In several cases, after a TLS connection is established, it is desirable to derive keys to be used in another application or protocol (e.g., in an other TLS session using pre-shared keys). The following describe GnuTLS' implementation of RFC5705 to extract keys based on a session's master secret.
The API to use is gnutls_prf. The
function needs to be provided with a label,
and additional context data to mix in the extra
parameter.
Moreover, the API allows to switch the mix of the
client and server random nonces, using the server_random_first
parameter.
In typical uses you don't need it, so a zero value should be provided in server_random_first
.
For example, after establishing a TLS session using gnutls_handshake, you can obtain 32-bytes to be used as key, using this call:
#define MYLABEL "EXPORTER-My-protocol-name" #define MYCONTEXT "my-protocol's-1st-session" char out[32]; rc = gnutls_prf (session, sizeof(MYLABEL)-1, MYLABEL, 0, sizeof(MYCONTEXT)-1, MYCONTEXT, 32, out);
The output key depends on TLS' master secret, and is the same on both client and server.
If you don't want to use the RFC5705 interface and not mix in the client and server random nonces, there is a low-level TLS PRF interface called gnutls_prf_raw.
In user authentication protocols (e.g., EAP or SASL mechanisms) it is useful to have a unique string that identifies the secure channel that is used, to bind together the user authentication with the secure channel. This can protect against man-in-the-middle attacks in some situations. That unique string is called a “channel binding”. For background and discussion see [RFC5056].
In GnuTLS you can extract a channel binding using the
gnutls_session_channel_binding function. Currently only the
type GNUTLS_CB_TLS_UNIQUE
is supported, which corresponds to
the tls-unique
channel binding for TLS defined in
[RFC5929].
The following example describes how to print the channel binding data. Note that it must be run after a successful TLS handshake.
{ gnutls_datum_t cb; int rc; rc = gnutls_session_channel_binding (session, GNUTLS_CB_TLS_UNIQUE, &cb); if (rc) fprintf (stderr, "Channel binding error: %s\n", gnutls_strerror (rc)); else { size_t i; printf ("- Channel binding 'tls-unique': "); for (i = 0; i < cb.size; i++) printf ("%02x", cb.data[i]); printf ("\n"); } }
The TLS protocols support many ciphersuites, extensions and version numbers. As a result, few implementations are not able to properly interoperate once faced with extensions or version protocols they do not support and understand. The TLS protocol allows for a graceful downgrade to the commonly supported options, but practice shows it is not always implemented correctly.
Because there is no way to achieve maximum interoperability with broken peers without sacrificing security, GnuTLS ignores such peers by default. This might not be acceptable in cases where maximum compatibility is required. Thus we allow enabling compatibility with broken peers using priority strings (see Priority Strings). A conservative priority string that would disable certain TLS protocol options that are known to cause compatibility problems, is shown below.
NORMAL:%COMPAT
For very old broken peers that do not tolerate TLS version numbers over TLS 1.0 another priority string is:
NORMAL:-VERS-TLS-ALL:+VERS-TLS1.0:+VERS-SSL3.0:%COMPATThis priority string will in addition to above, only enable SSL 3.0 and TLS 1.0 as protocols.
To ease GnuTLS' integration with existing applications, a
compatibility layer with the OpenSSL library is included
in the gnutls-openssl
library. This compatibility layer is not
complete and it is not intended to completely re-implement the OpenSSL
API with GnuTLS. It only provides limited source-level
compatibility.
The prototypes for the compatibility functions are in the gnutls/openssl.h header file. The limitations imposed by the compatibility layer include:
In this chapter several examples of real-world use cases are listed. The examples are simplified to promote readability and contain little or no error checking.
This section contains examples of TLS and SSL clients, using GnuTLS. Note that some of the examples require functions implemented by another example.
Let's assume now that we want to create a TCP client which communicates with servers that use X.509 or OpenPGP certificate authentication. The following client is a very simple TLS client, which uses the high level verification functions for certificates, but does not support session resumption.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <string.h> #include <gnutls/gnutls.h> #include <gnutls/x509.h> #include "examples.h" /* A very basic TLS client, with X.509 authentication and server certificate * verification. Note that error checking for missing files etc. is omitted * for simplicity. */ #define MAX_BUF 1024 #define CAFILE "/etc/ssl/certs/ca-certificates.crt" #define MSG "GET / HTTP/1.0\r\n\r\n" extern int tcp_connect(void); extern void tcp_close(int sd); static int _verify_certificate_callback(gnutls_session_t session); int main(void) { int ret, sd, ii; gnutls_session_t session; char buffer[MAX_BUF + 1]; const char *err; gnutls_certificate_credentials_t xcred; if (gnutls_check_version("3.1.4") == NULL) { fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n"); exit(1); } /* for backwards compatibility with gnutls < 3.3.0 */ gnutls_global_init(); /* X509 stuff */ gnutls_certificate_allocate_credentials(&xcred); /* sets the trusted cas file */ gnutls_certificate_set_x509_trust_file(xcred, CAFILE, GNUTLS_X509_FMT_PEM); gnutls_certificate_set_verify_function(xcred, _verify_certificate_callback); /* If client holds a certificate it can be set using the following: * gnutls_certificate_set_x509_key_file (xcred, "cert.pem", "key.pem", GNUTLS_X509_FMT_PEM); */ /* Initialize TLS session */ gnutls_init(&session, GNUTLS_CLIENT); gnutls_session_set_ptr(session, (void *) "my_host_name"); gnutls_server_name_set(session, GNUTLS_NAME_DNS, "my_host_name", strlen("my_host_name")); /* use default priorities */ gnutls_set_default_priority(session); #if 0 /* if more fine-graned control is required */ ret = gnutls_priority_set_direct(session, "NORMAL", &err); if (ret < 0) { if (ret == GNUTLS_E_INVALID_REQUEST) { fprintf(stderr, "Syntax error at: %s\n", err); } exit(1); } #endif /* put the x509 credentials to the current session */ gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred); /* connect to the peer */ sd = tcp_connect(); gnutls_transport_set_int(session, sd); gnutls_handshake_set_timeout(session, GNUTLS_DEFAULT_HANDSHAKE_TIMEOUT); /* Perform the TLS handshake */ do { ret = gnutls_handshake(session); } while (ret < 0 && gnutls_error_is_fatal(ret) == 0); if (ret < 0) { fprintf(stderr, "*** Handshake failed\n"); gnutls_perror(ret); goto end; } else { char *desc; desc = gnutls_session_get_desc(session); printf("- Session info: %s\n", desc); gnutls_free(desc); } gnutls_record_send(session, MSG, strlen(MSG)); ret = gnutls_record_recv(session, buffer, MAX_BUF); if (ret == 0) { printf("- Peer has closed the TLS connection\n"); goto end; } else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) { fprintf(stderr, "*** Warning: %s\n", gnutls_strerror(ret)); } else if (ret < 0) { fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret)); goto end; } if (ret > 0) { printf("- Received %d bytes: ", ret); for (ii = 0; ii < ret; ii++) { fputc(buffer[ii], stdout); } fputs("\n", stdout); } gnutls_bye(session, GNUTLS_SHUT_RDWR); end: tcp_close(sd); gnutls_deinit(session); gnutls_certificate_free_credentials(xcred); gnutls_global_deinit(); return 0; } /* This function will verify the peer's certificate, and check * if the hostname matches, as well as the activation, expiration dates. */ static int _verify_certificate_callback(gnutls_session_t session) { unsigned int status; int ret, type; const char *hostname; gnutls_datum_t out; /* read hostname */ hostname = gnutls_session_get_ptr(session); /* This verification function uses the trusted CAs in the credentials * structure. So you must have installed one or more CA certificates. */ /* The following demonstrate two different verification functions, * the more flexible gnutls_certificate_verify_peers(), as well * as the old gnutls_certificate_verify_peers3(). */ #if 1 { gnutls_typed_vdata_st data[2]; memset(data, 0, sizeof(data)); data[0].type = GNUTLS_DT_DNS_HOSTNAME; data[0].data = (void*)hostname; data[1].type = GNUTLS_DT_KEY_PURPOSE_OID; data[1].data = (void*)GNUTLS_KP_TLS_WWW_SERVER; ret = gnutls_certificate_verify_peers(session, data, 2, &status); } #else ret = gnutls_certificate_verify_peers3(session, hostname, &status); #endif if (ret < 0) { printf("Error\n"); return GNUTLS_E_CERTIFICATE_ERROR; } type = gnutls_certificate_type_get(session); ret = gnutls_certificate_verification_status_print(status, type, &out, 0); if (ret < 0) { printf("Error\n"); return GNUTLS_E_CERTIFICATE_ERROR; } printf("%s", out.data); gnutls_free(out.data); if (status != 0) /* Certificate is not trusted */ return GNUTLS_E_CERTIFICATE_ERROR; /* notify gnutls to continue handshake normally */ return 0; }
This is an alternative verification function that will use the X.509 certificate authorities for verification, but also assume an trust on first use (SSH-like) authentication system. That is the user is prompted on unknown public keys and known public keys are considered trusted.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <string.h> #include <gnutls/gnutls.h> #include <gnutls/x509.h> #include "examples.h" /* This function will verify the peer's certificate, check * if the hostname matches. In addition it will perform an * SSH-style authentication, where ultimately trusted keys * are only the keys that have been seen before. */ int _ssh_verify_certificate_callback(gnutls_session_t session) { unsigned int status; const gnutls_datum_t *cert_list; unsigned int cert_list_size; int ret, type; gnutls_datum_t out; const char *hostname; /* read hostname */ hostname = gnutls_session_get_ptr(session); /* This verification function uses the trusted CAs in the credentials * structure. So you must have installed one or more CA certificates. */ ret = gnutls_certificate_verify_peers3(session, hostname, &status); if (ret < 0) { printf("Error\n"); return GNUTLS_E_CERTIFICATE_ERROR; } type = gnutls_certificate_type_get(session); ret = gnutls_certificate_verification_status_print(status, type, &out, 0); if (ret < 0) { printf("Error\n"); return GNUTLS_E_CERTIFICATE_ERROR; } printf("%s", out.data); gnutls_free(out.data); if (status != 0) /* Certificate is not trusted */ return GNUTLS_E_CERTIFICATE_ERROR; /* Do SSH verification */ cert_list = gnutls_certificate_get_peers(session, &cert_list_size); if (cert_list == NULL) { printf("No certificate was found!\n"); return GNUTLS_E_CERTIFICATE_ERROR; } /* service may be obtained alternatively using getservbyport() */ ret = gnutls_verify_stored_pubkey(NULL, NULL, hostname, "https", type, &cert_list[0], 0); if (ret == GNUTLS_E_NO_CERTIFICATE_FOUND) { printf("Host %s is not known.", hostname); if (status == 0) printf("Its certificate is valid for %s.\n", hostname); /* the certificate must be printed and user must be asked on * whether it is trustworthy. --see gnutls_x509_crt_print() */ /* if not trusted */ return GNUTLS_E_CERTIFICATE_ERROR; } else if (ret == GNUTLS_E_CERTIFICATE_KEY_MISMATCH) { printf ("Warning: host %s is known but has another key associated.", hostname); printf ("It might be that the server has multiple keys, or you are under attack\n"); if (status == 0) printf("Its certificate is valid for %s.\n", hostname); /* the certificate must be printed and user must be asked on * whether it is trustworthy. --see gnutls_x509_crt_print() */ /* if not trusted */ return GNUTLS_E_CERTIFICATE_ERROR; } else if (ret < 0) { printf("gnutls_verify_stored_pubkey: %s\n", gnutls_strerror(ret)); return ret; } /* user trusts the key -> store it */ if (ret != 0) { ret = gnutls_store_pubkey(NULL, NULL, hostname, "https", type, &cert_list[0], 0, 0); if (ret < 0) printf("gnutls_store_pubkey: %s\n", gnutls_strerror(ret)); } /* notify gnutls to continue handshake normally */ return 0; }
The simplest client using TLS is the one that doesn't do any authentication. This means no external certificates or passwords are needed to set up the connection. As could be expected, the connection is vulnerable to man-in-the-middle (active or redirection) attacks. However, the data are integrity protected and encrypted from passive eavesdroppers.
Note that due to the vulnerable nature of this method very few public servers support it.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <arpa/inet.h> #include <unistd.h> #include <gnutls/gnutls.h> /* A very basic TLS client, with anonymous authentication. */ #define MAX_BUF 1024 #define MSG "GET / HTTP/1.0\r\n\r\n" extern int tcp_connect(void); extern void tcp_close(int sd); int main(void) { int ret, sd, ii; gnutls_session_t session; char buffer[MAX_BUF + 1]; gnutls_anon_client_credentials_t anoncred; /* Need to enable anonymous KX specifically. */ gnutls_global_init(); gnutls_anon_allocate_client_credentials(&anoncred); /* Initialize TLS session */ gnutls_init(&session, GNUTLS_CLIENT); /* Use default priorities */ gnutls_priority_set_direct(session, "PERFORMANCE:+ANON-ECDH:+ANON-DH", NULL); /* put the anonymous credentials to the current session */ gnutls_credentials_set(session, GNUTLS_CRD_ANON, anoncred); /* connect to the peer */ sd = tcp_connect(); gnutls_transport_set_int(session, sd); gnutls_handshake_set_timeout(session, GNUTLS_DEFAULT_HANDSHAKE_TIMEOUT); /* Perform the TLS handshake */ do { ret = gnutls_handshake(session); } while (ret < 0 && gnutls_error_is_fatal(ret) == 0); if (ret < 0) { fprintf(stderr, "*** Handshake failed\n"); gnutls_perror(ret); goto end; } else { char *desc; desc = gnutls_session_get_desc(session); printf("- Session info: %s\n", desc); gnutls_free(desc); } gnutls_record_send(session, MSG, strlen(MSG)); ret = gnutls_record_recv(session, buffer, MAX_BUF); if (ret == 0) { printf("- Peer has closed the TLS connection\n"); goto end; } else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) { fprintf(stderr, "*** Warning: %s\n", gnutls_strerror(ret)); } else if (ret < 0) { fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret)); goto end; } if (ret > 0) { printf("- Received %d bytes: ", ret); for (ii = 0; ii < ret; ii++) { fputc(buffer[ii], stdout); } fputs("\n", stdout); } gnutls_bye(session, GNUTLS_SHUT_RDWR); end: tcp_close(sd); gnutls_deinit(session); gnutls_anon_free_client_credentials(anoncred); gnutls_global_deinit(); return 0; }
This is a client that uses UDP to connect to a server. This is the DTLS equivalent to the TLS example with X.509 certificates.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <arpa/inet.h> #include <unistd.h> #include <gnutls/gnutls.h> #include <gnutls/dtls.h> /* A very basic Datagram TLS client, over UDP with X.509 authentication. */ #define MAX_BUF 1024 #define CAFILE "/etc/ssl/certs/ca-certificates.crt" #define MSG "GET / HTTP/1.0\r\n\r\n" extern int udp_connect(void); extern void udp_close(int sd); extern int verify_certificate_callback(gnutls_session_t session); int main(void) { int ret, sd, ii; gnutls_session_t session; char buffer[MAX_BUF + 1]; const char *err; gnutls_certificate_credentials_t xcred; if (gnutls_check_version("3.1.4") == NULL) { fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n"); exit(1); } /* for backwards compatibility with gnutls < 3.3.0 */ gnutls_global_init(); /* X509 stuff */ gnutls_certificate_allocate_credentials(&xcred); /* sets the trusted cas file */ gnutls_certificate_set_x509_trust_file(xcred, CAFILE, GNUTLS_X509_FMT_PEM); gnutls_certificate_set_verify_function(xcred, verify_certificate_callback); /* Initialize TLS session */ gnutls_init(&session, GNUTLS_CLIENT | GNUTLS_DATAGRAM); /* Use default priorities */ ret = gnutls_priority_set_direct(session, "NORMAL", &err); if (ret < 0) { if (ret == GNUTLS_E_INVALID_REQUEST) { fprintf(stderr, "Syntax error at: %s\n", err); } exit(1); } /* put the x509 credentials to the current session */ gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred); gnutls_server_name_set(session, GNUTLS_NAME_DNS, "my_host_name", strlen("my_host_name")); /* connect to the peer */ sd = udp_connect(); gnutls_transport_set_int(session, sd); /* set the connection MTU */ gnutls_dtls_set_mtu(session, 1000); gnutls_handshake_set_timeout(session, GNUTLS_DEFAULT_HANDSHAKE_TIMEOUT); /* Perform the TLS handshake */ do { ret = gnutls_handshake(session); } while (ret == GNUTLS_E_INTERRUPTED || ret == GNUTLS_E_AGAIN); /* Note that DTLS may also receive GNUTLS_E_LARGE_PACKET */ if (ret < 0) { fprintf(stderr, "*** Handshake failed\n"); gnutls_perror(ret); goto end; } else { char *desc; desc = gnutls_session_get_desc(session); printf("- Session info: %s\n", desc); gnutls_free(desc); } gnutls_record_send(session, MSG, strlen(MSG)); ret = gnutls_record_recv(session, buffer, MAX_BUF); if (ret == 0) { printf("- Peer has closed the TLS connection\n"); goto end; } else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) { fprintf(stderr, "*** Warning: %s\n", gnutls_strerror(ret)); } else if (ret < 0) { fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret)); goto end; } if (ret > 0) { printf("- Received %d bytes: ", ret); for (ii = 0; ii < ret; ii++) { fputc(buffer[ii], stdout); } fputs("\n", stdout); } /* It is suggested not to use GNUTLS_SHUT_RDWR in DTLS * connections because the peer's closure message might * be lost */ gnutls_bye(session, GNUTLS_SHUT_WR); end: udp_close(sd); gnutls_deinit(session); gnutls_certificate_free_credentials(xcred); gnutls_global_deinit(); return 0; }
Most of the times it is desirable to know the security properties of the current established session. This includes the underlying ciphers and the protocols involved. That is the purpose of the following function. Note that this function will print meaningful values only if called after a successful gnutls_handshake.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <gnutls/gnutls.h> #include <gnutls/x509.h> #include "examples.h" /* This function will print some details of the * given session. */ int print_info(gnutls_session_t session) { const char *tmp; gnutls_credentials_type_t cred; gnutls_kx_algorithm_t kx; int dhe, ecdh; dhe = ecdh = 0; /* print the key exchange's algorithm name */ kx = gnutls_kx_get(session); tmp = gnutls_kx_get_name(kx); printf("- Key Exchange: %s\n", tmp); /* Check the authentication type used and switch * to the appropriate. */ cred = gnutls_auth_get_type(session); switch (cred) { case GNUTLS_CRD_IA: printf("- TLS/IA session\n"); break; #ifdef ENABLE_SRP case GNUTLS_CRD_SRP: printf("- SRP session with username %s\n", gnutls_srp_server_get_username(session)); break; #endif case GNUTLS_CRD_PSK: /* This returns NULL in server side. */ if (gnutls_psk_client_get_hint(session) != NULL) printf("- PSK authentication. PSK hint '%s'\n", gnutls_psk_client_get_hint(session)); /* This returns NULL in client side. */ if (gnutls_psk_server_get_username(session) != NULL) printf("- PSK authentication. Connected as '%s'\n", gnutls_psk_server_get_username(session)); if (kx == GNUTLS_KX_ECDHE_PSK) ecdh = 1; else if (kx == GNUTLS_KX_DHE_PSK) dhe = 1; break; case GNUTLS_CRD_ANON: /* anonymous authentication */ printf("- Anonymous authentication.\n"); if (kx == GNUTLS_KX_ANON_ECDH) ecdh = 1; else if (kx == GNUTLS_KX_ANON_DH) dhe = 1; break; case GNUTLS_CRD_CERTIFICATE: /* certificate authentication */ /* Check if we have been using ephemeral Diffie-Hellman. */ if (kx == GNUTLS_KX_DHE_RSA || kx == GNUTLS_KX_DHE_DSS) dhe = 1; else if (kx == GNUTLS_KX_ECDHE_RSA || kx == GNUTLS_KX_ECDHE_ECDSA) ecdh = 1; /* if the certificate list is available, then * print some information about it. */ print_x509_certificate_info(session); } /* switch */ if (ecdh != 0) printf("- Ephemeral ECDH using curve %s\n", gnutls_ecc_curve_get_name(gnutls_ecc_curve_get (session))); else if (dhe != 0) printf("- Ephemeral DH using prime of %d bits\n", gnutls_dh_get_prime_bits(session)); /* print the protocol's name (ie TLS 1.0) */ tmp = gnutls_protocol_get_name(gnutls_protocol_get_version(session)); printf("- Protocol: %s\n", tmp); /* print the certificate type of the peer. * ie X.509 */ tmp = gnutls_certificate_type_get_name(gnutls_certificate_type_get (session)); printf("- Certificate Type: %s\n", tmp); /* print the compression algorithm (if any) */ tmp = gnutls_compression_get_name(gnutls_compression_get(session)); printf("- Compression: %s\n", tmp); /* print the name of the cipher used. * ie 3DES. */ tmp = gnutls_cipher_get_name(gnutls_cipher_get(session)); printf("- Cipher: %s\n", tmp); /* Print the MAC algorithms name. * ie SHA1 */ tmp = gnutls_mac_get_name(gnutls_mac_get(session)); printf("- MAC: %s\n", tmp); return 0; }
There are cases where a client holds several certificate and key pairs, and may not want to load all of them in the credentials structure. The following example demonstrates the use of the certificate selection callback.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <arpa/inet.h> #include <unistd.h> #include <gnutls/gnutls.h> #include <gnutls/x509.h> #include <gnutls/abstract.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> /* A TLS client that loads the certificate and key. */ #define MAX_BUF 1024 #define MSG "GET / HTTP/1.0\r\n\r\n" #define CERT_FILE "cert.pem" #define KEY_FILE "key.pem" #define CAFILE "/etc/ssl/certs/ca-certificates.crt" extern int tcp_connect(void); extern void tcp_close(int sd); static int cert_callback(gnutls_session_t session, const gnutls_datum_t * req_ca_rdn, int nreqs, const gnutls_pk_algorithm_t * sign_algos, int sign_algos_length, gnutls_pcert_st ** pcert, unsigned int *pcert_length, gnutls_privkey_t * pkey); gnutls_pcert_st pcrt; gnutls_privkey_t key; /* Load the certificate and the private key. */ static void load_keys(void) { int ret; gnutls_datum_t data; ret = gnutls_load_file(CERT_FILE, &data); if (ret < 0) { fprintf(stderr, "*** Error loading certificate file.\n"); exit(1); } ret = gnutls_pcert_import_x509_raw(&pcrt, &data, GNUTLS_X509_FMT_PEM, 0); if (ret < 0) { fprintf(stderr, "*** Error loading certificate file: %s\n", gnutls_strerror(ret)); exit(1); } gnutls_free(data.data); ret = gnutls_load_file(KEY_FILE, &data); if (ret < 0) { fprintf(stderr, "*** Error loading key file.\n"); exit(1); } gnutls_privkey_init(&key); ret = gnutls_privkey_import_x509_raw(key, &data, GNUTLS_X509_FMT_PEM, NULL, 0); if (ret < 0) { fprintf(stderr, "*** Error loading key file: %s\n", gnutls_strerror(ret)); exit(1); } gnutls_free(data.data); } int main(void) { int ret, sd, ii; gnutls_session_t session; gnutls_priority_t priorities_cache; char buffer[MAX_BUF + 1]; gnutls_certificate_credentials_t xcred; if (gnutls_check_version("3.1.4") == NULL) { fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n"); exit(1); } /* for backwards compatibility with gnutls < 3.3.0 */ gnutls_global_init(); load_keys(); /* X509 stuff */ gnutls_certificate_allocate_credentials(&xcred); /* priorities */ gnutls_priority_init(&priorities_cache, "NORMAL", NULL); /* sets the trusted cas file */ gnutls_certificate_set_x509_trust_file(xcred, CAFILE, GNUTLS_X509_FMT_PEM); gnutls_certificate_set_retrieve_function2(xcred, cert_callback); /* Initialize TLS session */ gnutls_init(&session, GNUTLS_CLIENT); /* Use default priorities */ gnutls_priority_set(session, priorities_cache); /* put the x509 credentials to the current session */ gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred); /* connect to the peer */ sd = tcp_connect(); gnutls_transport_set_int(session, sd); /* Perform the TLS handshake */ ret = gnutls_handshake(session); if (ret < 0) { fprintf(stderr, "*** Handshake failed\n"); gnutls_perror(ret); goto end; } else { char *desc; desc = gnutls_session_get_desc(session); printf("- Session info: %s\n", desc); gnutls_free(desc); } gnutls_record_send(session, MSG, strlen(MSG)); ret = gnutls_record_recv(session, buffer, MAX_BUF); if (ret == 0) { printf("- Peer has closed the TLS connection\n"); goto end; } else if (ret < 0) { fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret)); goto end; } printf("- Received %d bytes: ", ret); for (ii = 0; ii < ret; ii++) { fputc(buffer[ii], stdout); } fputs("\n", stdout); gnutls_bye(session, GNUTLS_SHUT_RDWR); end: tcp_close(sd); gnutls_deinit(session); gnutls_certificate_free_credentials(xcred); gnutls_priority_deinit(priorities_cache); gnutls_global_deinit(); return 0; } /* This callback should be associated with a session by calling * gnutls_certificate_client_set_retrieve_function( session, cert_callback), * before a handshake. */ static int cert_callback(gnutls_session_t session, const gnutls_datum_t * req_ca_rdn, int nreqs, const gnutls_pk_algorithm_t * sign_algos, int sign_algos_length, gnutls_pcert_st ** pcert, unsigned int *pcert_length, gnutls_privkey_t * pkey) { char issuer_dn[256]; int i, ret; size_t len; gnutls_certificate_type_t type; /* Print the server's trusted CAs */ if (nreqs > 0) printf("- Server's trusted authorities:\n"); else printf ("- Server did not send us any trusted authorities names.\n"); /* print the names (if any) */ for (i = 0; i < nreqs; i++) { len = sizeof(issuer_dn); ret = gnutls_x509_rdn_get(&req_ca_rdn[i], issuer_dn, &len); if (ret >= 0) { printf(" [%d]: ", i); printf("%s\n", issuer_dn); } } /* Select a certificate and return it. * The certificate must be of any of the "sign algorithms" * supported by the server. */ type = gnutls_certificate_type_get(session); if (type == GNUTLS_CRT_X509) { *pcert_length = 1; *pcert = &pcrt; *pkey = key; } else { return -1; } return 0; }
An example is listed below which uses the high level verification functions to verify a given certificate list.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <string.h> #include <gnutls/gnutls.h> #include <gnutls/x509.h> #include "examples.h" /* All the available CRLs */ gnutls_x509_crl_t *crl_list; int crl_list_size; /* All the available trusted CAs */ gnutls_x509_crt_t *ca_list; int ca_list_size; static int print_details_func(gnutls_x509_crt_t cert, gnutls_x509_crt_t issuer, gnutls_x509_crl_t crl, unsigned int verification_output); /* This function will try to verify the peer's certificate chain, and * also check if the hostname matches. */ void verify_certificate_chain(const char *hostname, const gnutls_datum_t * cert_chain, int cert_chain_length) { int i; gnutls_x509_trust_list_t tlist; gnutls_x509_crt_t *cert; unsigned int output; /* Initialize the trusted certificate list. This should be done * once on initialization. gnutls_x509_crt_list_import2() and * gnutls_x509_crl_list_import2() can be used to load them. */ gnutls_x509_trust_list_init(&tlist, 0); gnutls_x509_trust_list_add_cas(tlist, ca_list, ca_list_size, 0); gnutls_x509_trust_list_add_crls(tlist, crl_list, crl_list_size, GNUTLS_TL_VERIFY_CRL, 0); cert = malloc(sizeof(*cert) * cert_chain_length); /* Import all the certificates in the chain to * native certificate format. */ for (i = 0; i < cert_chain_length; i++) { gnutls_x509_crt_init(&cert[i]); gnutls_x509_crt_import(cert[i], &cert_chain[i], GNUTLS_X509_FMT_DER); } gnutls_x509_trust_list_verify_named_crt(tlist, cert[0], hostname, strlen(hostname), GNUTLS_VERIFY_DISABLE_CRL_CHECKS, &output, print_details_func); /* if this certificate is not explicitly trusted verify against CAs */ if (output != 0) { gnutls_x509_trust_list_verify_crt(tlist, cert, cert_chain_length, 0, &output, print_details_func); } if (output & GNUTLS_CERT_INVALID) { fprintf(stderr, "Not trusted"); if (output & GNUTLS_CERT_SIGNER_NOT_FOUND) fprintf(stderr, ": no issuer was found"); if (output & GNUTLS_CERT_SIGNER_NOT_CA) fprintf(stderr, ": issuer is not a CA"); if (output & GNUTLS_CERT_NOT_ACTIVATED) fprintf(stderr, ": not yet activated\n"); if (output & GNUTLS_CERT_EXPIRED) fprintf(stderr, ": expired\n"); fprintf(stderr, "\n"); } else fprintf(stderr, "Trusted\n"); /* Check if the name in the first certificate matches our destination! */ if (!gnutls_x509_crt_check_hostname(cert[0], hostname)) { printf ("The certificate's owner does not match hostname '%s'\n", hostname); } gnutls_x509_trust_list_deinit(tlist, 1); return; } static int print_details_func(gnutls_x509_crt_t cert, gnutls_x509_crt_t issuer, gnutls_x509_crl_t crl, unsigned int verification_output) { char name[512]; char issuer_name[512]; size_t name_size; size_t issuer_name_size; issuer_name_size = sizeof(issuer_name); gnutls_x509_crt_get_issuer_dn(cert, issuer_name, &issuer_name_size); name_size = sizeof(name); gnutls_x509_crt_get_dn(cert, name, &name_size); fprintf(stdout, "\tSubject: %s\n", name); fprintf(stdout, "\tIssuer: %s\n", issuer_name); if (issuer != NULL) { issuer_name_size = sizeof(issuer_name); gnutls_x509_crt_get_dn(issuer, issuer_name, &issuer_name_size); fprintf(stdout, "\tVerified against: %s\n", issuer_name); } if (crl != NULL) { issuer_name_size = sizeof(issuer_name); gnutls_x509_crl_get_issuer_dn(crl, issuer_name, &issuer_name_size); fprintf(stdout, "\tVerified against CRL of: %s\n", issuer_name); } fprintf(stdout, "\tVerification output: %x\n\n", verification_output); return 0; }
This example will demonstrate how to load keys and certificates from a smart-card or any other PKCS #11 token, and use it in a TLS connection.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <arpa/inet.h> #include <unistd.h> #include <gnutls/gnutls.h> #include <gnutls/x509.h> #include <gnutls/pkcs11.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <getpass.h> /* for getpass() */ /* A TLS client that loads the certificate and key. */ #define MAX_BUF 1024 #define MSG "GET / HTTP/1.0\r\n\r\n" #define MIN(x,y) (((x)<(y))?(x):(y)) #define CAFILE "/etc/ssl/certs/ca-certificates.crt" /* The URLs of the objects can be obtained * using p11tool --list-all --login */ #define KEY_URL "pkcs11:manufacturer=SomeManufacturer;object=Private%20Key" \ ";objecttype=private;id=%db%5b%3e%b5%72%33" #define CERT_URL "pkcs11:manufacturer=SomeManufacturer;object=Certificate;" \ "objecttype=cert;id=db%5b%3e%b5%72%33" extern int tcp_connect(void); extern void tcp_close(int sd); static int pin_callback(void *user, int attempt, const char *token_url, const char *token_label, unsigned int flags, char *pin, size_t pin_max) { const char *password; int len; printf("PIN required for token '%s' with URL '%s'\n", token_label, token_url); if (flags & GNUTLS_PIN_FINAL_TRY) printf("*** This is the final try before locking!\n"); if (flags & GNUTLS_PIN_COUNT_LOW) printf("*** Only few tries left before locking!\n"); if (flags & GNUTLS_PIN_WRONG) printf("*** Wrong PIN\n"); password = getpass("Enter pin: "); if (password == NULL || password[0] == 0) { fprintf(stderr, "No password given\n"); exit(1); } len = MIN(pin_max - 1, strlen(password)); memcpy(pin, password, len); pin[len] = 0; return 0; } int main(void) { int ret, sd, ii; gnutls_session_t session; gnutls_priority_t priorities_cache; char buffer[MAX_BUF + 1]; gnutls_certificate_credentials_t xcred; /* Allow connections to servers that have OpenPGP keys as well. */ if (gnutls_check_version("3.1.4") == NULL) { fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n"); exit(1); } /* for backwards compatibility with gnutls < 3.3.0 */ gnutls_global_init(); /* The PKCS11 private key operations may require PIN. * Register a callback. */ gnutls_pkcs11_set_pin_function(pin_callback, NULL); /* X509 stuff */ gnutls_certificate_allocate_credentials(&xcred); /* priorities */ gnutls_priority_init(&priorities_cache, "NORMAL", NULL); /* sets the trusted cas file */ gnutls_certificate_set_x509_trust_file(xcred, CAFILE, GNUTLS_X509_FMT_PEM); gnutls_certificate_set_x509_key_file(xcred, CERT_URL, KEY_URL, GNUTLS_X509_FMT_DER); /* Initialize TLS session */ gnutls_init(&session, GNUTLS_CLIENT); /* Use default priorities */ gnutls_priority_set(session, priorities_cache); /* put the x509 credentials to the current session */ gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred); /* connect to the peer */ sd = tcp_connect(); gnutls_transport_set_int(session, sd); /* Perform the TLS handshake */ ret = gnutls_handshake(session); if (ret < 0) { fprintf(stderr, "*** Handshake failed\n"); gnutls_perror(ret); goto end; } else { char *desc; desc = gnutls_session_get_desc(session); printf("- Session info: %s\n", desc); gnutls_free(desc); } gnutls_record_send(session, MSG, strlen(MSG)); ret = gnutls_record_recv(session, buffer, MAX_BUF); if (ret == 0) { printf("- Peer has closed the TLS connection\n"); goto end; } else if (ret < 0) { fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret)); goto end; } printf("- Received %d bytes: ", ret); for (ii = 0; ii < ret; ii++) { fputc(buffer[ii], stdout); } fputs("\n", stdout); gnutls_bye(session, GNUTLS_SHUT_RDWR); end: tcp_close(sd); gnutls_deinit(session); gnutls_certificate_free_credentials(xcred); gnutls_priority_deinit(priorities_cache); gnutls_global_deinit(); return 0; }
This is a modification of the simple client example. Here we demonstrate the use of session resumption. The client tries to connect once using TLS, close the connection and then try to establish a new connection using the previously negotiated data.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <string.h> #include <stdio.h> #include <stdlib.h> #include <gnutls/gnutls.h> /* Those functions are defined in other examples. */ extern void check_alert(gnutls_session_t session, int ret); extern int tcp_connect(void); extern void tcp_close(int sd); #define MAX_BUF 1024 #define CAFILE "/etc/ssl/certs/ca-certificates.crt" #define MSG "GET / HTTP/1.0\r\n\r\n" int main(void) { int ret; int sd, ii; gnutls_session_t session; char buffer[MAX_BUF + 1]; gnutls_certificate_credentials_t xcred; /* variables used in session resuming */ int t; char *session_data = NULL; size_t session_data_size = 0; gnutls_global_init(); /* X509 stuff */ gnutls_certificate_allocate_credentials(&xcred); gnutls_certificate_set_x509_trust_file(xcred, CAFILE, GNUTLS_X509_FMT_PEM); for (t = 0; t < 2; t++) { /* connect 2 times to the server */ sd = tcp_connect(); gnutls_init(&session, GNUTLS_CLIENT); gnutls_priority_set_direct(session, "PERFORMANCE:!ARCFOUR-128", NULL); gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred); if (t > 0) { /* if this is not the first time we connect */ gnutls_session_set_data(session, session_data, session_data_size); free(session_data); } gnutls_transport_set_int(session, sd); gnutls_handshake_set_timeout(session, GNUTLS_DEFAULT_HANDSHAKE_TIMEOUT); /* Perform the TLS handshake */ do { ret = gnutls_handshake(session); } while (ret < 0 && gnutls_error_is_fatal(ret) == 0); if (ret < 0) { fprintf(stderr, "*** Handshake failed\n"); gnutls_perror(ret); goto end; } else { printf("- Handshake was completed\n"); } if (t == 0) { /* the first time we connect */ /* get the session data size */ gnutls_session_get_data(session, NULL, &session_data_size); session_data = malloc(session_data_size); /* put session data to the session variable */ gnutls_session_get_data(session, session_data, &session_data_size); } else { /* the second time we connect */ /* check if we actually resumed the previous session */ if (gnutls_session_is_resumed(session) != 0) { printf("- Previous session was resumed\n"); } else { fprintf(stderr, "*** Previous session was NOT resumed\n"); } } /* This function was defined in a previous example */ /* print_info(session); */ gnutls_record_send(session, MSG, strlen(MSG)); ret = gnutls_record_recv(session, buffer, MAX_BUF); if (ret == 0) { printf("- Peer has closed the TLS connection\n"); goto end; } else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) { fprintf(stderr, "*** Warning: %s\n", gnutls_strerror(ret)); } else if (ret < 0) { fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret)); goto end; } if (ret > 0) { printf("- Received %d bytes: ", ret); for (ii = 0; ii < ret; ii++) { fputc(buffer[ii], stdout); } fputs("\n", stdout); } gnutls_bye(session, GNUTLS_SHUT_RDWR); end: tcp_close(sd); gnutls_deinit(session); } /* for() */ gnutls_certificate_free_credentials(xcred); gnutls_global_deinit(); return 0; }
The following client is a very simple SRP TLS client which connects to a server and authenticates using a username and a password. The server may authenticate itself using a certificate, and in that case it has to be verified.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <string.h> #include <gnutls/gnutls.h> /* Those functions are defined in other examples. */ extern void check_alert(gnutls_session_t session, int ret); extern int tcp_connect(void); extern void tcp_close(int sd); #define MAX_BUF 1024 #define USERNAME "user" #define PASSWORD "pass" #define CAFILE "/etc/ssl/certs/ca-certificates.crt" #define MSG "GET / HTTP/1.0\r\n\r\n" int main(void) { int ret; int sd, ii; gnutls_session_t session; char buffer[MAX_BUF + 1]; gnutls_srp_client_credentials_t srp_cred; gnutls_certificate_credentials_t cert_cred; if (gnutls_check_version("3.1.4") == NULL) { fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n"); exit(1); } /* for backwards compatibility with gnutls < 3.3.0 */ gnutls_global_init(); gnutls_srp_allocate_client_credentials(&srp_cred); gnutls_certificate_allocate_credentials(&cert_cred); gnutls_certificate_set_x509_trust_file(cert_cred, CAFILE, GNUTLS_X509_FMT_PEM); gnutls_srp_set_client_credentials(srp_cred, USERNAME, PASSWORD); /* connects to server */ sd = tcp_connect(); /* Initialize TLS session */ gnutls_init(&session, GNUTLS_CLIENT); /* Set the priorities. */ gnutls_priority_set_direct(session, "NORMAL:+SRP:+SRP-RSA:+SRP-DSS", NULL); /* put the SRP credentials to the current session */ gnutls_credentials_set(session, GNUTLS_CRD_SRP, srp_cred); gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, cert_cred); gnutls_transport_set_int(session, sd); gnutls_handshake_set_timeout(session, GNUTLS_DEFAULT_HANDSHAKE_TIMEOUT); /* Perform the TLS handshake */ do { ret = gnutls_handshake(session); } while (ret < 0 && gnutls_error_is_fatal(ret) == 0); if (ret < 0) { fprintf(stderr, "*** Handshake failed\n"); gnutls_perror(ret); goto end; } else { char *desc; desc = gnutls_session_get_desc(session); printf("- Session info: %s\n", desc); gnutls_free(desc); } gnutls_record_send(session, MSG, strlen(MSG)); ret = gnutls_record_recv(session, buffer, MAX_BUF); if (gnutls_error_is_fatal(ret) != 0 || ret == 0) { if (ret == 0) { printf ("- Peer has closed the GnuTLS connection\n"); goto end; } else { fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret)); goto end; } } else check_alert(session, ret); if (ret > 0) { printf("- Received %d bytes: ", ret); for (ii = 0; ii < ret; ii++) { fputc(buffer[ii], stdout); } fputs("\n", stdout); } gnutls_bye(session, GNUTLS_SHUT_RDWR); end: tcp_close(sd); gnutls_deinit(session); gnutls_srp_free_client_credentials(srp_cred); gnutls_certificate_free_credentials(cert_cred); gnutls_global_deinit(); return 0; }
The following client is a simple example of a client client utilizing the GnuTLS C++ API.
#include <config.h> #include <iostream> #include <stdexcept> #include <gnutls/gnutls.h> #include <gnutls/gnutlsxx.h> #include <cstring> /* for strlen */ /* A very basic TLS client, with anonymous authentication. * written by Eduardo Villanueva Che. */ #define MAX_BUF 1024 #define SA struct sockaddr #define CAFILE "ca.pem" #define MSG "GET / HTTP/1.0\r\n\r\n" extern "C" { int tcp_connect(void); void tcp_close(int sd); } int main(void) { int sd = -1; gnutls_global_init(); try { /* Allow connections to servers that have OpenPGP keys as well. */ gnutls::client_session session; /* X509 stuff */ gnutls::certificate_credentials credentials; /* sets the trusted cas file */ credentials.set_x509_trust_file(CAFILE, GNUTLS_X509_FMT_PEM); /* put the x509 credentials to the current session */ session.set_credentials(credentials); /* Use default priorities */ session.set_priority ("NORMAL", NULL); /* connect to the peer */ sd = tcp_connect(); session.set_transport_ptr((gnutls_transport_ptr_t) (ptrdiff_t)sd); /* Perform the TLS handshake */ int ret = session.handshake(); if (ret < 0) { throw std::runtime_error("Handshake failed"); } else { std::cout << "- Handshake was completed" << std::endl; } session.send(MSG, strlen(MSG)); char buffer[MAX_BUF + 1]; ret = session.recv(buffer, MAX_BUF); if (ret == 0) { throw std::runtime_error("Peer has closed the TLS connection"); } else if (ret < 0) { throw std::runtime_error(gnutls_strerror(ret)); } std::cout << "- Received " << ret << " bytes:" << std::endl; std::cout.write(buffer, ret); std::cout << std::endl; session.bye(GNUTLS_SHUT_RDWR); } catch (std::exception &ex) { std::cerr << "Exception caught: " << ex.what() << std::endl; } if (sd != -1) tcp_close(sd); gnutls_global_deinit(); return 0; }
Those helper function abstract away TCP connection handling from the other examples. It is required to build some examples.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <arpa/inet.h> #include <netinet/in.h> #include <unistd.h> /* tcp.c */ int tcp_connect(void); void tcp_close(int sd); /* Connects to the peer and returns a socket * descriptor. */ extern int tcp_connect(void) { const char *PORT = "5556"; const char *SERVER = "127.0.0.1"; int err, sd; struct sockaddr_in sa; /* connects to server */ sd = socket(AF_INET, SOCK_STREAM, 0); memset(&sa, '\0', sizeof(sa)); sa.sin_family = AF_INET; sa.sin_port = htons(atoi(PORT)); inet_pton(AF_INET, SERVER, &sa.sin_addr); err = connect(sd, (struct sockaddr *) &sa, sizeof(sa)); if (err < 0) { fprintf(stderr, "Connect error\n"); exit(1); } return sd; } /* closes the given socket descriptor. */ extern void tcp_close(int sd) { shutdown(sd, SHUT_RDWR); /* no more receptions */ close(sd); }
The UDP helper functions abstract away UDP connection handling from the other examples. It is required to build the examples using UDP.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <arpa/inet.h> #include <netinet/in.h> #include <unistd.h> /* udp.c */ int udp_connect(void); void udp_close(int sd); /* Connects to the peer and returns a socket * descriptor. */ extern int udp_connect(void) { const char *PORT = "5557"; const char *SERVER = "127.0.0.1"; int err, sd, optval; struct sockaddr_in sa; /* connects to server */ sd = socket(AF_INET, SOCK_DGRAM, 0); memset(&sa, '\0', sizeof(sa)); sa.sin_family = AF_INET; sa.sin_port = htons(atoi(PORT)); inet_pton(AF_INET, SERVER, &sa.sin_addr); #if defined(IP_DONTFRAG) optval = 1; setsockopt(sd, IPPROTO_IP, IP_DONTFRAG, (const void *) &optval, sizeof(optval)); #elif defined(IP_MTU_DISCOVER) optval = IP_PMTUDISC_DO; setsockopt(sd, IPPROTO_IP, IP_MTU_DISCOVER, (const void *) &optval, sizeof(optval)); #endif err = connect(sd, (struct sockaddr *) &sa, sizeof(sa)); if (err < 0) { fprintf(stderr, "Connect error\n"); exit(1); } return sd; } /* closes the given socket descriptor. */ extern void udp_close(int sd) { close(sd); }
This section contains examples of TLS and SSL servers, using GnuTLS.
This example is a very simple echo server which supports X.509 authentication.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <sys/types.h> #include <sys/socket.h> #include <arpa/inet.h> #include <netinet/in.h> #include <string.h> #include <unistd.h> #include <gnutls/gnutls.h> #define KEYFILE "key.pem" #define CERTFILE "cert.pem" #define CAFILE "/etc/ssl/certs/ca-certificates.crt" #define CRLFILE "crl.pem" /* The OCSP status file contains up to date information about revocation * of the server's certificate. That can be periodically be updated * using: * $ ocsptool --ask --load-cert your_cert.pem --load-issuer your_issuer.pem * --load-signer your_issuer.pem --outfile ocsp-status.der */ #define OCSP_STATUS_FILE "ocsp-status.der" /* This is a sample TLS 1.0 echo server, using X.509 authentication and * OCSP stapling support. */ #define MAX_BUF 1024 #define PORT 5556 /* listen to 5556 port */ /* These are global */ static gnutls_dh_params_t dh_params; static int generate_dh_params(void) { unsigned int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH, GNUTLS_SEC_PARAM_LEGACY); /* Generate Diffie-Hellman parameters - for use with DHE * kx algorithms. When short bit length is used, it might * be wise to regenerate parameters often. */ gnutls_dh_params_init(&dh_params); gnutls_dh_params_generate2(dh_params, bits); return 0; } int main(void) { int listen_sd; int sd, ret; gnutls_certificate_credentials_t x509_cred; gnutls_priority_t priority_cache; struct sockaddr_in sa_serv; struct sockaddr_in sa_cli; socklen_t client_len; char topbuf[512]; gnutls_session_t session; char buffer[MAX_BUF + 1]; int optval = 1; /* for backwards compatibility with gnutls < 3.3.0 */ gnutls_global_init(); gnutls_certificate_allocate_credentials(&x509_cred); /* gnutls_certificate_set_x509_system_trust(xcred); */ gnutls_certificate_set_x509_trust_file(x509_cred, CAFILE, GNUTLS_X509_FMT_PEM); gnutls_certificate_set_x509_crl_file(x509_cred, CRLFILE, GNUTLS_X509_FMT_PEM); ret = gnutls_certificate_set_x509_key_file(x509_cred, CERTFILE, KEYFILE, GNUTLS_X509_FMT_PEM); if (ret < 0) { printf("No certificate or key were found\n"); exit(1); } /* loads an OCSP status request if available */ gnutls_certificate_set_ocsp_status_request_file(x509_cred, OCSP_STATUS_FILE, 0); generate_dh_params(); gnutls_priority_init(&priority_cache, "PERFORMANCE:%SERVER_PRECEDENCE", NULL); gnutls_certificate_set_dh_params(x509_cred, dh_params); /* Socket operations */ listen_sd = socket(AF_INET, SOCK_STREAM, 0); memset(&sa_serv, '\0', sizeof(sa_serv)); sa_serv.sin_family = AF_INET; sa_serv.sin_addr.s_addr = INADDR_ANY; sa_serv.sin_port = htons(PORT); /* Server Port number */ setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval, sizeof(int)); bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv)); listen(listen_sd, 1024); printf("Server ready. Listening to port '%d'.\n\n", PORT); client_len = sizeof(sa_cli); for (;;) { gnutls_init(&session, GNUTLS_SERVER); gnutls_priority_set(session, priority_cache); gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, x509_cred); /* We don't request any certificate from the client. * If we did we would need to verify it. One way of * doing that is shown in the "Verifying a certificate" * example. */ gnutls_certificate_server_set_request(session, GNUTLS_CERT_IGNORE); sd = accept(listen_sd, (struct sockaddr *) &sa_cli, &client_len); printf("- connection from %s, port %d\n", inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf, sizeof(topbuf)), ntohs(sa_cli.sin_port)); gnutls_transport_set_int(session, sd); do { ret = gnutls_handshake(session); } while (ret < 0 && gnutls_error_is_fatal(ret) == 0); if (ret < 0) { close(sd); gnutls_deinit(session); fprintf(stderr, "*** Handshake has failed (%s)\n\n", gnutls_strerror(ret)); continue; } printf("- Handshake was completed\n"); /* see the Getting peer's information example */ /* print_info(session); */ for (;;) { ret = gnutls_record_recv(session, buffer, MAX_BUF); if (ret == 0) { printf ("\n- Peer has closed the GnuTLS connection\n"); break; } else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) { fprintf(stderr, "*** Warning: %s\n", gnutls_strerror(ret)); } else if (ret < 0) { fprintf(stderr, "\n*** Received corrupted " "data(%d). Closing the connection.\n\n", ret); break; } else if (ret > 0) { /* echo data back to the client */ gnutls_record_send(session, buffer, ret); } } printf("\n"); /* do not wait for the peer to close the connection. */ gnutls_bye(session, GNUTLS_SHUT_WR); close(sd); gnutls_deinit(session); } close(listen_sd); gnutls_certificate_free_credentials(x509_cred); gnutls_priority_deinit(priority_cache); gnutls_global_deinit(); return 0; }
The following example is an echo server which supports OpenPGP key authentication. You can easily combine this functionality —that is have a server that supports both X.509 and OpenPGP certificates— but we separated them to keep these examples as simple as possible.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <sys/types.h> #include <sys/socket.h> #include <arpa/inet.h> #include <netinet/in.h> #include <string.h> #include <unistd.h> #include <gnutls/gnutls.h> #include <gnutls/openpgp.h> #define KEYFILE "secret.asc" #define CERTFILE "public.asc" #define RINGFILE "ring.gpg" /* This is a sample TLS 1.0-OpenPGP echo server. */ #define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);} #define MAX_BUF 1024 #define PORT 5556 /* listen to 5556 port */ /* These are global */ gnutls_dh_params_t dh_params; static int generate_dh_params(void) { unsigned int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH, GNUTLS_SEC_PARAM_LEGACY); /* Generate Diffie-Hellman parameters - for use with DHE * kx algorithms. These should be discarded and regenerated * once a day, once a week or once a month. Depending on the * security requirements. */ gnutls_dh_params_init(&dh_params); gnutls_dh_params_generate2(dh_params, bits); return 0; } int main(void) { int err, listen_sd; int sd, ret; struct sockaddr_in sa_serv; struct sockaddr_in sa_cli; socklen_t client_len; char topbuf[512]; gnutls_session_t session; gnutls_certificate_credentials_t cred; char buffer[MAX_BUF + 1]; int optval = 1; char name[256]; strcpy(name, "Echo Server"); if (gnutls_check_version("3.1.4") == NULL) { fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n"); exit(1); } /* for backwards compatibility with gnutls < 3.3.0 */ gnutls_global_init(); gnutls_certificate_allocate_credentials(&cred); gnutls_certificate_set_openpgp_keyring_file(cred, RINGFILE, GNUTLS_OPENPGP_FMT_BASE64); gnutls_certificate_set_openpgp_key_file(cred, CERTFILE, KEYFILE, GNUTLS_OPENPGP_FMT_BASE64); generate_dh_params(); gnutls_certificate_set_dh_params(cred, dh_params); /* Socket operations */ listen_sd = socket(AF_INET, SOCK_STREAM, 0); SOCKET_ERR(listen_sd, "socket"); memset(&sa_serv, '\0', sizeof(sa_serv)); sa_serv.sin_family = AF_INET; sa_serv.sin_addr.s_addr = INADDR_ANY; sa_serv.sin_port = htons(PORT); /* Server Port number */ setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval, sizeof(int)); err = bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv)); SOCKET_ERR(err, "bind"); err = listen(listen_sd, 1024); SOCKET_ERR(err, "listen"); printf("%s ready. Listening to port '%d'.\n\n", name, PORT); client_len = sizeof(sa_cli); for (;;) { gnutls_init(&session, GNUTLS_SERVER); gnutls_priority_set_direct(session, "NORMAL:+CTYPE-OPENPGP", NULL); /* request client certificate if any. */ gnutls_certificate_server_set_request(session, GNUTLS_CERT_REQUEST); sd = accept(listen_sd, (struct sockaddr *) &sa_cli, &client_len); printf("- connection from %s, port %d\n", inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf, sizeof(topbuf)), ntohs(sa_cli.sin_port)); gnutls_transport_set_int(session, sd); ret = gnutls_handshake(session); if (ret < 0) { close(sd); gnutls_deinit(session); fprintf(stderr, "*** Handshake has failed (%s)\n\n", gnutls_strerror(ret)); continue; } printf("- Handshake was completed\n"); /* see the Getting peer's information example */ /* print_info(session); */ for (;;) { ret = gnutls_record_recv(session, buffer, MAX_BUF); if (ret == 0) { printf ("\n- Peer has closed the GnuTLS connection\n"); break; } else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) { fprintf(stderr, "*** Warning: %s\n", gnutls_strerror(ret)); } else if (ret < 0) { fprintf(stderr, "\n*** Received corrupted " "data(%d). Closing the connection.\n\n", ret); break; } else if (ret > 0) { /* echo data back to the client */ gnutls_record_send(session, buffer, ret); } } printf("\n"); /* do not wait for the peer to close the connection. */ gnutls_bye(session, GNUTLS_SHUT_WR); close(sd); gnutls_deinit(session); } close(listen_sd); gnutls_certificate_free_credentials(cred); gnutls_global_deinit(); return 0; }
This is a server which supports SRP authentication. It is also possible to combine this functionality with a certificate server. Here it is separate for simplicity.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <sys/types.h> #include <sys/socket.h> #include <arpa/inet.h> #include <netinet/in.h> #include <string.h> #include <unistd.h> #include <gnutls/gnutls.h> #define SRP_PASSWD "tpasswd" #define SRP_PASSWD_CONF "tpasswd.conf" #define KEYFILE "key.pem" #define CERTFILE "cert.pem" #define CAFILE "/etc/ssl/certs/ca-certificates.crt" /* This is a sample TLS-SRP echo server. */ #define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);} #define MAX_BUF 1024 #define PORT 5556 /* listen to 5556 port */ int main(void) { int err, listen_sd; int sd, ret; struct sockaddr_in sa_serv; struct sockaddr_in sa_cli; socklen_t client_len; char topbuf[512]; gnutls_session_t session; gnutls_srp_server_credentials_t srp_cred; gnutls_certificate_credentials_t cert_cred; char buffer[MAX_BUF + 1]; int optval = 1; char name[256]; strcpy(name, "Echo Server"); if (gnutls_check_version("3.1.4") == NULL) { fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n"); exit(1); } /* for backwards compatibility with gnutls < 3.3.0 */ gnutls_global_init(); /* SRP_PASSWD a password file (created with the included srptool utility) */ gnutls_srp_allocate_server_credentials(&srp_cred); gnutls_srp_set_server_credentials_file(srp_cred, SRP_PASSWD, SRP_PASSWD_CONF); gnutls_certificate_allocate_credentials(&cert_cred); gnutls_certificate_set_x509_trust_file(cert_cred, CAFILE, GNUTLS_X509_FMT_PEM); gnutls_certificate_set_x509_key_file(cert_cred, CERTFILE, KEYFILE, GNUTLS_X509_FMT_PEM); /* TCP socket operations */ listen_sd = socket(AF_INET, SOCK_STREAM, 0); SOCKET_ERR(listen_sd, "socket"); memset(&sa_serv, '\0', sizeof(sa_serv)); sa_serv.sin_family = AF_INET; sa_serv.sin_addr.s_addr = INADDR_ANY; sa_serv.sin_port = htons(PORT); /* Server Port number */ setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval, sizeof(int)); err = bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv)); SOCKET_ERR(err, "bind"); err = listen(listen_sd, 1024); SOCKET_ERR(err, "listen"); printf("%s ready. Listening to port '%d'.\n\n", name, PORT); client_len = sizeof(sa_cli); for (;;) { gnutls_init(&session, GNUTLS_SERVER); gnutls_priority_set_direct(session, "NORMAL" ":-KX-ALL:+SRP:+SRP-DSS:+SRP-RSA", NULL); gnutls_credentials_set(session, GNUTLS_CRD_SRP, srp_cred); /* for the certificate authenticated ciphersuites. */ gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, cert_cred); /* We don't request any certificate from the client. * If we did we would need to verify it. One way of * doing that is shown in the "Verifying a certificate" * example. */ gnutls_certificate_server_set_request(session, GNUTLS_CERT_IGNORE); sd = accept(listen_sd, (struct sockaddr *) &sa_cli, &client_len); printf("- connection from %s, port %d\n", inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf, sizeof(topbuf)), ntohs(sa_cli.sin_port)); gnutls_transport_set_int(session, sd); do { ret = gnutls_handshake(session); } while (ret < 0 && gnutls_error_is_fatal(ret) == 0); if (ret < 0) { close(sd); gnutls_deinit(session); fprintf(stderr, "*** Handshake has failed (%s)\n\n", gnutls_strerror(ret)); continue; } printf("- Handshake was completed\n"); printf("- User %s was connected\n", gnutls_srp_server_get_username(session)); /* print_info(session); */ for (;;) { ret = gnutls_record_recv(session, buffer, MAX_BUF); if (ret == 0) { printf ("\n- Peer has closed the GnuTLS connection\n"); break; } else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) { fprintf(stderr, "*** Warning: %s\n", gnutls_strerror(ret)); } else if (ret < 0) { fprintf(stderr, "\n*** Received corrupted " "data(%d). Closing the connection.\n\n", ret); break; } else if (ret > 0) { /* echo data back to the client */ gnutls_record_send(session, buffer, ret); } } printf("\n"); /* do not wait for the peer to close the connection. */ gnutls_bye(session, GNUTLS_SHUT_WR); close(sd); gnutls_deinit(session); } close(listen_sd); gnutls_srp_free_server_credentials(srp_cred); gnutls_certificate_free_credentials(cert_cred); gnutls_global_deinit(); return 0; }
This example server supports anonymous authentication, and could be used to serve the example client for anonymous authentication.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <sys/types.h> #include <sys/socket.h> #include <arpa/inet.h> #include <netinet/in.h> #include <string.h> #include <unistd.h> #include <gnutls/gnutls.h> /* This is a sample TLS 1.0 echo server, for anonymous authentication only. */ #define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);} #define MAX_BUF 1024 #define PORT 5556 /* listen to 5556 port */ /* These are global */ static gnutls_dh_params_t dh_params; static int generate_dh_params(void) { unsigned int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH, GNUTLS_SEC_PARAM_LEGACY); /* Generate Diffie-Hellman parameters - for use with DHE * kx algorithms. These should be discarded and regenerated * once a day, once a week or once a month. Depending on the * security requirements. */ gnutls_dh_params_init(&dh_params); gnutls_dh_params_generate2(dh_params, bits); return 0; } int main(void) { int err, listen_sd; int sd, ret; struct sockaddr_in sa_serv; struct sockaddr_in sa_cli; socklen_t client_len; char topbuf[512]; gnutls_session_t session; gnutls_anon_server_credentials_t anoncred; char buffer[MAX_BUF + 1]; int optval = 1; if (gnutls_check_version("3.1.4") == NULL) { fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n"); exit(1); } /* for backwards compatibility with gnutls < 3.3.0 */ gnutls_global_init(); gnutls_anon_allocate_server_credentials(&anoncred); generate_dh_params(); gnutls_anon_set_server_dh_params(anoncred, dh_params); /* Socket operations */ listen_sd = socket(AF_INET, SOCK_STREAM, 0); SOCKET_ERR(listen_sd, "socket"); memset(&sa_serv, '\0', sizeof(sa_serv)); sa_serv.sin_family = AF_INET; sa_serv.sin_addr.s_addr = INADDR_ANY; sa_serv.sin_port = htons(PORT); /* Server Port number */ setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval, sizeof(int)); err = bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv)); SOCKET_ERR(err, "bind"); err = listen(listen_sd, 1024); SOCKET_ERR(err, "listen"); printf("Server ready. Listening to port '%d'.\n\n", PORT); client_len = sizeof(sa_cli); for (;;) { gnutls_init(&session, GNUTLS_SERVER); gnutls_priority_set_direct(session, "NORMAL::+ANON-ECDH:+ANON-DH", NULL); gnutls_credentials_set(session, GNUTLS_CRD_ANON, anoncred); sd = accept(listen_sd, (struct sockaddr *) &sa_cli, &client_len); printf("- connection from %s, port %d\n", inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf, sizeof(topbuf)), ntohs(sa_cli.sin_port)); gnutls_transport_set_int(session, sd); do { ret = gnutls_handshake(session); } while (ret < 0 && gnutls_error_is_fatal(ret) == 0); if (ret < 0) { close(sd); gnutls_deinit(session); fprintf(stderr, "*** Handshake has failed (%s)\n\n", gnutls_strerror(ret)); continue; } printf("- Handshake was completed\n"); /* see the Getting peer's information example */ /* print_info(session); */ for (;;) { ret = gnutls_record_recv(session, buffer, MAX_BUF); if (ret == 0) { printf ("\n- Peer has closed the GnuTLS connection\n"); break; } else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) { fprintf(stderr, "*** Warning: %s\n", gnutls_strerror(ret)); } else if (ret < 0) { fprintf(stderr, "\n*** Received corrupted " "data(%d). Closing the connection.\n\n", ret); break; } else if (ret > 0) { /* echo data back to the client */ gnutls_record_send(session, buffer, ret); } } printf("\n"); /* do not wait for the peer to close the connection. */ gnutls_bye(session, GNUTLS_SHUT_WR); close(sd); gnutls_deinit(session); } close(listen_sd); gnutls_anon_free_server_credentials(anoncred); gnutls_global_deinit(); return 0; }
This example is a very simple echo server using Datagram TLS and X.509 authentication.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <sys/types.h> #include <sys/socket.h> #include <arpa/inet.h> #include <netinet/in.h> #include <sys/select.h> #include <netdb.h> #include <string.h> #include <unistd.h> #include <gnutls/gnutls.h> #include <gnutls/dtls.h> #define KEYFILE "key.pem" #define CERTFILE "cert.pem" #define CAFILE "/etc/ssl/certs/ca-certificates.crt" #define CRLFILE "crl.pem" /* This is a sample DTLS echo server, using X.509 authentication. * Note that error checking is minimal to simplify the example. */ #define MAX_BUFFER 1024 #define PORT 5556 typedef struct { gnutls_session_t session; int fd; struct sockaddr *cli_addr; socklen_t cli_addr_size; } priv_data_st; static int pull_timeout_func(gnutls_transport_ptr_t ptr, unsigned int ms); static ssize_t push_func(gnutls_transport_ptr_t p, const void *data, size_t size); static ssize_t pull_func(gnutls_transport_ptr_t p, void *data, size_t size); static const char *human_addr(const struct sockaddr *sa, socklen_t salen, char *buf, size_t buflen); static int wait_for_connection(int fd); static int generate_dh_params(void); /* Use global credentials and parameters to simplify * the example. */ static gnutls_certificate_credentials_t x509_cred; static gnutls_priority_t priority_cache; static gnutls_dh_params_t dh_params; int main(void) { int listen_sd; int sock, ret; struct sockaddr_in sa_serv; struct sockaddr_in cli_addr; socklen_t cli_addr_size; gnutls_session_t session; char buffer[MAX_BUFFER]; priv_data_st priv; gnutls_datum_t cookie_key; gnutls_dtls_prestate_st prestate; int mtu = 1400; unsigned char sequence[8]; /* this must be called once in the program */ gnutls_global_init(); gnutls_certificate_allocate_credentials(&x509_cred); gnutls_certificate_set_x509_trust_file(x509_cred, CAFILE, GNUTLS_X509_FMT_PEM); gnutls_certificate_set_x509_crl_file(x509_cred, CRLFILE, GNUTLS_X509_FMT_PEM); ret = gnutls_certificate_set_x509_key_file(x509_cred, CERTFILE, KEYFILE, GNUTLS_X509_FMT_PEM); if (ret < 0) { printf("No certificate or key were found\n"); exit(1); } generate_dh_params(); gnutls_certificate_set_dh_params(x509_cred, dh_params); gnutls_priority_init(&priority_cache, "PERFORMANCE:-VERS-TLS-ALL:+VERS-DTLS1.0:%SERVER_PRECEDENCE", NULL); gnutls_key_generate(&cookie_key, GNUTLS_COOKIE_KEY_SIZE); /* Socket operations */ listen_sd = socket(AF_INET, SOCK_DGRAM, 0); memset(&sa_serv, '\0', sizeof(sa_serv)); sa_serv.sin_family = AF_INET; sa_serv.sin_addr.s_addr = INADDR_ANY; sa_serv.sin_port = htons(PORT); { /* DTLS requires the IP don't fragment (DF) bit to be set */ #if defined(IP_DONTFRAG) int optval = 1; setsockopt(listen_sd, IPPROTO_IP, IP_DONTFRAG, (const void *) &optval, sizeof(optval)); #elif defined(IP_MTU_DISCOVER) int optval = IP_PMTUDISC_DO; setsockopt(listen_sd, IPPROTO_IP, IP_MTU_DISCOVER, (const void *) &optval, sizeof(optval)); #endif } bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv)); printf("UDP server ready. Listening to port '%d'.\n\n", PORT); for (;;) { printf("Waiting for connection...\n"); sock = wait_for_connection(listen_sd); if (sock < 0) continue; cli_addr_size = sizeof(cli_addr); ret = recvfrom(sock, buffer, sizeof(buffer), MSG_PEEK, (struct sockaddr *) &cli_addr, &cli_addr_size); if (ret > 0) { memset(&prestate, 0, sizeof(prestate)); ret = gnutls_dtls_cookie_verify(&cookie_key, &cli_addr, sizeof(cli_addr), buffer, ret, &prestate); if (ret < 0) { /* cookie not valid */ priv_data_st s; memset(&s, 0, sizeof(s)); s.fd = sock; s.cli_addr = (void *) &cli_addr; s.cli_addr_size = sizeof(cli_addr); printf ("Sending hello verify request to %s\n", human_addr((struct sockaddr *) &cli_addr, sizeof(cli_addr), buffer, sizeof(buffer))); gnutls_dtls_cookie_send(&cookie_key, &cli_addr, sizeof(cli_addr), &prestate, (gnutls_transport_ptr_t) & s, push_func); /* discard peeked data */ recvfrom(sock, buffer, sizeof(buffer), 0, (struct sockaddr *) &cli_addr, &cli_addr_size); usleep(100); continue; } printf("Accepted connection from %s\n", human_addr((struct sockaddr *) &cli_addr, sizeof(cli_addr), buffer, sizeof(buffer))); } else continue; gnutls_init(&session, GNUTLS_SERVER | GNUTLS_DATAGRAM); gnutls_priority_set(session, priority_cache); gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, x509_cred); gnutls_dtls_prestate_set(session, &prestate); gnutls_dtls_set_mtu(session, mtu); priv.session = session; priv.fd = sock; priv.cli_addr = (struct sockaddr *) &cli_addr; priv.cli_addr_size = sizeof(cli_addr); gnutls_transport_set_ptr(session, &priv); gnutls_transport_set_push_function(session, push_func); gnutls_transport_set_pull_function(session, pull_func); gnutls_transport_set_pull_timeout_function(session, pull_timeout_func); do { ret = gnutls_handshake(session); } while (ret == GNUTLS_E_INTERRUPTED || ret == GNUTLS_E_AGAIN); /* Note that DTLS may also receive GNUTLS_E_LARGE_PACKET. * In that case the MTU should be adjusted. */ if (ret < 0) { fprintf(stderr, "Error in handshake(): %s\n", gnutls_strerror(ret)); gnutls_deinit(session); continue; } printf("- Handshake was completed\n"); for (;;) { do { ret = gnutls_record_recv_seq(session, buffer, MAX_BUFFER, sequence); } while (ret == GNUTLS_E_AGAIN || ret == GNUTLS_E_INTERRUPTED); if (ret < 0 && gnutls_error_is_fatal(ret) == 0) { fprintf(stderr, "*** Warning: %s\n", gnutls_strerror(ret)); continue; } else if (ret < 0) { fprintf(stderr, "Error in recv(): %s\n", gnutls_strerror(ret)); break; } if (ret == 0) { printf("EOF\n\n"); break; } buffer[ret] = 0; printf ("received[%.2x%.2x%.2x%.2x%.2x%.2x%.2x%.2x]: %s\n", sequence[0], sequence[1], sequence[2], sequence[3], sequence[4], sequence[5], sequence[6], sequence[7], buffer); /* reply back */ ret = gnutls_record_send(session, buffer, ret); if (ret < 0) { fprintf(stderr, "Error in send(): %s\n", gnutls_strerror(ret)); break; } } gnutls_bye(session, GNUTLS_SHUT_WR); gnutls_deinit(session); } close(listen_sd); gnutls_certificate_free_credentials(x509_cred); gnutls_priority_deinit(priority_cache); gnutls_global_deinit(); return 0; } static int wait_for_connection(int fd) { fd_set rd, wr; int n; FD_ZERO(&rd); FD_ZERO(&wr); FD_SET(fd, &rd); /* waiting part */ n = select(fd + 1, &rd, &wr, NULL, NULL); if (n == -1 && errno == EINTR) return -1; if (n < 0) { perror("select()"); exit(1); } return fd; } /* Wait for data to be received within a timeout period in milliseconds */ static int pull_timeout_func(gnutls_transport_ptr_t ptr, unsigned int ms) { fd_set rfds; struct timeval tv; priv_data_st *priv = ptr; struct sockaddr_in cli_addr; socklen_t cli_addr_size; int ret; char c; FD_ZERO(&rfds); FD_SET(priv->fd, &rfds); tv.tv_sec = 0; tv.tv_usec = ms * 1000; while (tv.tv_usec >= 1000000) { tv.tv_usec -= 1000000; tv.tv_sec++; } ret = select(priv->fd + 1, &rfds, NULL, NULL, &tv); if (ret <= 0) return ret; /* only report ok if the next message is from the peer we expect * from */ cli_addr_size = sizeof(cli_addr); ret = recvfrom(priv->fd, &c, 1, MSG_PEEK, (struct sockaddr *) &cli_addr, &cli_addr_size); if (ret > 0) { if (cli_addr_size == priv->cli_addr_size && memcmp(&cli_addr, priv->cli_addr, sizeof(cli_addr)) == 0) return 1; } return 0; } static ssize_t push_func(gnutls_transport_ptr_t p, const void *data, size_t size) { priv_data_st *priv = p; return sendto(priv->fd, data, size, 0, priv->cli_addr, priv->cli_addr_size); } static ssize_t pull_func(gnutls_transport_ptr_t p, void *data, size_t size) { priv_data_st *priv = p; struct sockaddr_in cli_addr; socklen_t cli_addr_size; char buffer[64]; int ret; cli_addr_size = sizeof(cli_addr); ret = recvfrom(priv->fd, data, size, 0, (struct sockaddr *) &cli_addr, &cli_addr_size); if (ret == -1) return ret; if (cli_addr_size == priv->cli_addr_size && memcmp(&cli_addr, priv->cli_addr, sizeof(cli_addr)) == 0) return ret; printf("Denied connection from %s\n", human_addr((struct sockaddr *) &cli_addr, sizeof(cli_addr), buffer, sizeof(buffer))); gnutls_transport_set_errno(priv->session, EAGAIN); return -1; } static const char *human_addr(const struct sockaddr *sa, socklen_t salen, char *buf, size_t buflen) { const char *save_buf = buf; size_t l; if (!buf || !buflen) return NULL; *buf = '\0'; switch (sa->sa_family) { #if HAVE_IPV6 case AF_INET6: snprintf(buf, buflen, "IPv6 "); break; #endif case AF_INET: snprintf(buf, buflen, "IPv4 "); break; } l = strlen(buf); buf += l; buflen -= l; if (getnameinfo(sa, salen, buf, buflen, NULL, 0, NI_NUMERICHOST) != 0) return NULL; l = strlen(buf); buf += l; buflen -= l; strncat(buf, " port ", buflen); l = strlen(buf); buf += l; buflen -= l; if (getnameinfo(sa, salen, NULL, 0, buf, buflen, NI_NUMERICSERV) != 0) return NULL; return save_buf; } static int generate_dh_params(void) { int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH, GNUTLS_SEC_PARAM_LEGACY); /* Generate Diffie-Hellman parameters - for use with DHE * kx algorithms. When short bit length is used, it might * be wise to regenerate parameters often. */ gnutls_dh_params_init(&dh_params); gnutls_dh_params_generate2(dh_params, bits); return 0; }
A small tool to generate OCSP requests.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <string.h> #include <gnutls/gnutls.h> #include <gnutls/crypto.h> #include <gnutls/ocsp.h> #ifndef NO_LIBCURL #include <curl/curl.h> #endif #include "read-file.h" size_t get_data(void *buffer, size_t size, size_t nmemb, void *userp); static gnutls_x509_crt_t load_cert(const char *cert_file); static void _response_info(const gnutls_datum_t * data); static void _generate_request(gnutls_datum_t * rdata, gnutls_x509_crt_t cert, gnutls_x509_crt_t issuer, gnutls_datum_t *nonce); static int _verify_response(gnutls_datum_t * data, gnutls_x509_crt_t cert, gnutls_x509_crt_t signer, gnutls_datum_t *nonce); /* This program queries an OCSP server. It expects three files. argv[1] containing the certificate to be checked, argv[2] holding the issuer for this certificate, and argv[3] holding a trusted certificate to verify OCSP's response. argv[4] is optional and should hold the server host name. For simplicity the libcurl library is used. */ int main(int argc, char *argv[]) { gnutls_datum_t ud, tmp; int ret; gnutls_datum_t req; gnutls_x509_crt_t cert, issuer, signer; #ifndef NO_LIBCURL CURL *handle; struct curl_slist *headers = NULL; #endif int v, seq; const char *cert_file = argv[1]; const char *issuer_file = argv[2]; const char *signer_file = argv[3]; char *hostname = NULL; unsigned char noncebuf[23]; gnutls_datum_t nonce = { noncebuf, sizeof(noncebuf) }; gnutls_global_init(); if (argc > 4) hostname = argv[4]; ret = gnutls_rnd(GNUTLS_RND_NONCE, nonce.data, nonce.size); if (ret < 0) exit(1); cert = load_cert(cert_file); issuer = load_cert(issuer_file); signer = load_cert(signer_file); if (hostname == NULL) { for (seq = 0;; seq++) { ret = gnutls_x509_crt_get_authority_info_access(cert, seq, GNUTLS_IA_OCSP_URI, &tmp, NULL); if (ret == GNUTLS_E_UNKNOWN_ALGORITHM) continue; if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE) { fprintf(stderr, "No URI was found in the certificate.\n"); exit(1); } if (ret < 0) { fprintf(stderr, "error: %s\n", gnutls_strerror(ret)); exit(1); } printf("CA issuers URI: %.*s\n", tmp.size, tmp.data); hostname = malloc(tmp.size + 1); memcpy(hostname, tmp.data, tmp.size); hostname[tmp.size] = 0; gnutls_free(tmp.data); break; } } /* Note that the OCSP servers hostname might be available * using gnutls_x509_crt_get_authority_info_access() in the issuer's * certificate */ memset(&ud, 0, sizeof(ud)); fprintf(stderr, "Connecting to %s\n", hostname); _generate_request(&req, cert, issuer, &nonce); #ifndef NO_LIBCURL curl_global_init(CURL_GLOBAL_ALL); handle = curl_easy_init(); if (handle == NULL) exit(1); headers = curl_slist_append(headers, "Content-Type: application/ocsp-request"); curl_easy_setopt(handle, CURLOPT_HTTPHEADER, headers); curl_easy_setopt(handle, CURLOPT_POSTFIELDS, (void *) req.data); curl_easy_setopt(handle, CURLOPT_POSTFIELDSIZE, req.size); curl_easy_setopt(handle, CURLOPT_URL, hostname); curl_easy_setopt(handle, CURLOPT_WRITEFUNCTION, get_data); curl_easy_setopt(handle, CURLOPT_WRITEDATA, &ud); ret = curl_easy_perform(handle); if (ret != 0) { fprintf(stderr, "curl[%d] error %d\n", __LINE__, ret); exit(1); } curl_easy_cleanup(handle); #endif _response_info(&ud); v = _verify_response(&ud, cert, signer, &nonce); gnutls_x509_crt_deinit(cert); gnutls_x509_crt_deinit(issuer); gnutls_x509_crt_deinit(signer); gnutls_global_deinit(); return v; } static void _response_info(const gnutls_datum_t * data) { gnutls_ocsp_resp_t resp; int ret; gnutls_datum buf; ret = gnutls_ocsp_resp_init(&resp); if (ret < 0) exit(1); ret = gnutls_ocsp_resp_import(resp, data); if (ret < 0) exit(1); ret = gnutls_ocsp_resp_print(resp, GNUTLS_OCSP_PRINT_FULL, &buf); if (ret != 0) exit(1); printf("%.*s", buf.size, buf.data); gnutls_free(buf.data); gnutls_ocsp_resp_deinit(resp); } static gnutls_x509_crt_t load_cert(const char *cert_file) { gnutls_x509_crt_t crt; int ret; gnutls_datum_t data; size_t size; ret = gnutls_x509_crt_init(&crt); if (ret < 0) exit(1); data.data = (void *) read_binary_file(cert_file, &size); data.size = size; if (!data.data) { fprintf(stderr, "Cannot open file: %s\n", cert_file); exit(1); } ret = gnutls_x509_crt_import(crt, &data, GNUTLS_X509_FMT_PEM); free(data.data); if (ret < 0) { fprintf(stderr, "Cannot import certificate in %s: %s\n", cert_file, gnutls_strerror(ret)); exit(1); } return crt; } static void _generate_request(gnutls_datum_t * rdata, gnutls_x509_crt_t cert, gnutls_x509_crt_t issuer, gnutls_datum_t *nonce) { gnutls_ocsp_req_t req; int ret; ret = gnutls_ocsp_req_init(&req); if (ret < 0) exit(1); ret = gnutls_ocsp_req_add_cert(req, GNUTLS_DIG_SHA1, issuer, cert); if (ret < 0) exit(1); ret = gnutls_ocsp_req_set_nonce(req, 0, nonce); if (ret < 0) exit(1); ret = gnutls_ocsp_req_export(req, rdata); if (ret != 0) exit(1); gnutls_ocsp_req_deinit(req); return; } static int _verify_response(gnutls_datum_t * data, gnutls_x509_crt_t cert, gnutls_x509_crt_t signer, gnutls_datum_t *nonce) { gnutls_ocsp_resp_t resp; int ret; unsigned verify; gnutls_datum_t rnonce; ret = gnutls_ocsp_resp_init(&resp); if (ret < 0) exit(1); ret = gnutls_ocsp_resp_import(resp, data); if (ret < 0) exit(1); ret = gnutls_ocsp_resp_check_crt(resp, 0, cert); if (ret < 0) exit(1); ret = gnutls_ocsp_resp_get_nonce(resp, NULL, &rnonce); if (ret < 0) exit(1); if (rnonce.size != nonce->size || memcmp(nonce->data, rnonce.data, nonce->size) != 0) { exit(1); } ret = gnutls_ocsp_resp_verify_direct(resp, signer, &verify, 0); if (ret < 0) exit(1); printf("Verifying OCSP Response: "); if (verify == 0) printf("Verification success!\n"); else printf("Verification error!\n"); if (verify & GNUTLS_OCSP_VERIFY_SIGNER_NOT_FOUND) printf("Signer cert not found\n"); if (verify & GNUTLS_OCSP_VERIFY_SIGNER_KEYUSAGE_ERROR) printf("Signer cert keyusage error\n"); if (verify & GNUTLS_OCSP_VERIFY_UNTRUSTED_SIGNER) printf("Signer cert is not trusted\n"); if (verify & GNUTLS_OCSP_VERIFY_INSECURE_ALGORITHM) printf("Insecure algorithm\n"); if (verify & GNUTLS_OCSP_VERIFY_SIGNATURE_FAILURE) printf("Signature failure\n"); if (verify & GNUTLS_OCSP_VERIFY_CERT_NOT_ACTIVATED) printf("Signer cert not yet activated\n"); if (verify & GNUTLS_OCSP_VERIFY_CERT_EXPIRED) printf("Signer cert expired\n"); gnutls_free(rnonce.data); gnutls_ocsp_resp_deinit(resp); return verify; } size_t get_data(void *buffer, size_t size, size_t nmemb, void *userp) { gnutls_datum_t *ud = userp; size *= nmemb; ud->data = realloc(ud->data, size + ud->size); if (ud->data == NULL) { fprintf(stderr, "Not enough memory for the request\n"); exit(1); } memcpy(&ud->data[ud->size], buffer, size); ud->size += size; return size; }
This is a function that checks if an alert has been received in the current session.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <gnutls/gnutls.h> #include "examples.h" /* This function will check whether the given return code from * a gnutls function (recv/send), is an alert, and will print * that alert. */ void check_alert(gnutls_session_t session, int ret) { int last_alert; if (ret == GNUTLS_E_WARNING_ALERT_RECEIVED || ret == GNUTLS_E_FATAL_ALERT_RECEIVED) { last_alert = gnutls_alert_get(session); /* The check for renegotiation is only useful if we are * a server, and we had requested a rehandshake. */ if (last_alert == GNUTLS_A_NO_RENEGOTIATION && ret == GNUTLS_E_WARNING_ALERT_RECEIVED) printf("* Received NO_RENEGOTIATION alert. " "Client Does not support renegotiation.\n"); else printf("* Received alert '%d': %s.\n", last_alert, gnutls_alert_get_name(last_alert)); } }
To demonstrate the X.509 parsing capabilities an example program is listed below. That program reads the peer's certificate, and prints information about it.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <gnutls/gnutls.h> #include <gnutls/x509.h> #include "examples.h" static const char *bin2hex(const void *bin, size_t bin_size) { static char printable[110]; const unsigned char *_bin = bin; char *print; size_t i; if (bin_size > 50) bin_size = 50; print = printable; for (i = 0; i < bin_size; i++) { sprintf(print, "%.2x ", _bin[i]); print += 2; } return printable; } /* This function will print information about this session's peer * certificate. */ void print_x509_certificate_info(gnutls_session_t session) { char serial[40]; char dn[256]; size_t size; unsigned int algo, bits; time_t expiration_time, activation_time; const gnutls_datum_t *cert_list; unsigned int cert_list_size = 0; gnutls_x509_crt_t cert; gnutls_datum_t cinfo; /* This function only works for X.509 certificates. */ if (gnutls_certificate_type_get(session) != GNUTLS_CRT_X509) return; cert_list = gnutls_certificate_get_peers(session, &cert_list_size); printf("Peer provided %d certificates.\n", cert_list_size); if (cert_list_size > 0) { int ret; /* we only print information about the first certificate. */ gnutls_x509_crt_init(&cert); gnutls_x509_crt_import(cert, &cert_list[0], GNUTLS_X509_FMT_DER); printf("Certificate info:\n"); /* This is the preferred way of printing short information about a certificate. */ ret = gnutls_x509_crt_print(cert, GNUTLS_CRT_PRINT_ONELINE, &cinfo); if (ret == 0) { printf("\t%s\n", cinfo.data); gnutls_free(cinfo.data); } /* If you want to extract fields manually for some other reason, below are popular example calls. */ expiration_time = gnutls_x509_crt_get_expiration_time(cert); activation_time = gnutls_x509_crt_get_activation_time(cert); printf("\tCertificate is valid since: %s", ctime(&activation_time)); printf("\tCertificate expires: %s", ctime(&expiration_time)); /* Print the serial number of the certificate. */ size = sizeof(serial); gnutls_x509_crt_get_serial(cert, serial, &size); printf("\tCertificate serial number: %s\n", bin2hex(serial, size)); /* Extract some of the public key algorithm's parameters */ algo = gnutls_x509_crt_get_pk_algorithm(cert, &bits); printf("Certificate public key: %s", gnutls_pk_algorithm_get_name(algo)); /* Print the version of the X.509 * certificate. */ printf("\tCertificate version: #%d\n", gnutls_x509_crt_get_version(cert)); size = sizeof(dn); gnutls_x509_crt_get_dn(cert, dn, &size); printf("\tDN: %s\n", dn); size = sizeof(dn); gnutls_x509_crt_get_issuer_dn(cert, dn, &size); printf("\tIssuer's DN: %s\n", dn); gnutls_x509_crt_deinit(cert); } }
This is a small program to list the enabled ciphersuites by a priority string.
/* This example code is placed in the public domain. */ #include <config.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <gnutls/gnutls.h> static void print_cipher_suite_list(const char *priorities) { size_t i; int ret; unsigned int idx; const char *name; const char *err; unsigned char id[2]; gnutls_protocol_t version; gnutls_priority_t pcache; if (priorities != NULL) { printf("Cipher suites for %s\n", priorities); ret = gnutls_priority_init(&pcache, priorities, &err); if (ret < 0) { fprintf(stderr, "Syntax error at: %s\n", err); exit(1); } for (i = 0;; i++) { ret = gnutls_priority_get_cipher_suite_index(pcache, i, &idx); if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE) break; if (ret == GNUTLS_E_UNKNOWN_CIPHER_SUITE) continue; name = gnutls_cipher_suite_info(idx, id, NULL, NULL, NULL, &version); if (name != NULL) printf("%-50s\t0x%02x, 0x%02x\t%s\n", name, (unsigned char) id[0], (unsigned char) id[1], gnutls_protocol_get_name(version)); } return; } } int main(int argc, char **argv) { if (argc > 1) print_cipher_suite_list(argv[1]); return 0; }
This small program demonstrates the usage of the PKCS #12 API, by generating such a structure.
/* This example code is placed in the public domain. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <stdlib.h> #include <gnutls/gnutls.h> #include <gnutls/pkcs12.h> #include "examples.h" #define OUTFILE "out.p12" /* This function will write a pkcs12 structure into a file. * cert: is a DER encoded certificate * pkcs8_key: is a PKCS #8 encrypted key (note that this must be * encrypted using a PKCS #12 cipher, or some browsers will crash) * password: is the password used to encrypt the PKCS #12 packet. */ int write_pkcs12(const gnutls_datum_t * cert, const gnutls_datum_t * pkcs8_key, const char *password) { gnutls_pkcs12_t pkcs12; int ret, bag_index; gnutls_pkcs12_bag_t bag, key_bag; char pkcs12_struct[10 * 1024]; size_t pkcs12_struct_size; FILE *fd; /* A good idea might be to use gnutls_x509_privkey_get_key_id() * to obtain a unique ID. */ gnutls_datum_t key_id = { (void *) "\x00\x00\x07", 3 }; gnutls_global_init(); /* Firstly we create two helper bags, which hold the certificate, * and the (encrypted) key. */ gnutls_pkcs12_bag_init(&bag); gnutls_pkcs12_bag_init(&key_bag); ret = gnutls_pkcs12_bag_set_data(bag, GNUTLS_BAG_CERTIFICATE, cert); if (ret < 0) { fprintf(stderr, "ret: %s\n", gnutls_strerror(ret)); return 1; } /* ret now holds the bag's index. */ bag_index = ret; /* Associate a friendly name with the given certificate. Used * by browsers. */ gnutls_pkcs12_bag_set_friendly_name(bag, bag_index, "My name"); /* Associate the certificate with the key using a unique key * ID. */ gnutls_pkcs12_bag_set_key_id(bag, bag_index, &key_id); /* use weak encryption for the certificate. */ gnutls_pkcs12_bag_encrypt(bag, password, GNUTLS_PKCS_USE_PKCS12_RC2_40); /* Now the key. */ ret = gnutls_pkcs12_bag_set_data(key_bag, GNUTLS_BAG_PKCS8_ENCRYPTED_KEY, pkcs8_key); if (ret < 0) { fprintf(stderr, "ret: %s\n", gnutls_strerror(ret)); return 1; } /* Note that since the PKCS #8 key is already encrypted we don't * bother encrypting that bag. */ bag_index = ret; gnutls_pkcs12_bag_set_friendly_name(key_bag, bag_index, "My name"); gnutls_pkcs12_bag_set_key_id(key_bag, bag_index, &key_id); /* The bags were filled. Now create the PKCS #12 structure. */ gnutls_pkcs12_init(&pkcs12); /* Insert the two bags in the PKCS #12 structure. */ gnutls_pkcs12_set_bag(pkcs12, bag); gnutls_pkcs12_set_bag(pkcs12, key_bag); /* Generate a message authentication code for the PKCS #12 * structure. */ gnutls_pkcs12_generate_mac(pkcs12, password); pkcs12_struct_size = sizeof(pkcs12_struct); ret = gnutls_pkcs12_export(pkcs12, GNUTLS_X509_FMT_DER, pkcs12_struct, &pkcs12_struct_size); if (ret < 0) { fprintf(stderr, "ret: %s\n", gnutls_strerror(ret)); return 1; } fd = fopen(OUTFILE, "w"); if (fd == NULL) { fprintf(stderr, "cannot open file\n"); return 1; } fwrite(pkcs12_struct, 1, pkcs12_struct_size, fd); fclose(fd); gnutls_pkcs12_bag_deinit(bag); gnutls_pkcs12_bag_deinit(key_bag); gnutls_pkcs12_deinit(pkcs12); return 0; }
GnuTLS is not a low-level cryptographic library, i.e., it does not provide access to basic cryptographic primitives. However it abstracts the internal cryptographic back-end (see Cryptographic Backend), providing symmetric crypto, hash and HMAC algorithms, as well access to the random number generation.
The available functions to access symmetric crypto algorithms operations are shown below. The supported algorithms are the algorithms required by the TLS protocol. They are listed in Table 3.1.
gnutls_cipher_init (gnutls_cipher_hd_t *
handle, gnutls_cipher_algorithm_t
cipher, const gnutls_datum_t *
key, const gnutls_datum_t *
iv)
gnutls_cipher_encrypt2 (gnutls_cipher_hd_t
handle, const void *
text, size_t
textlen, void *
ciphertext, size_t
ciphertextlen)
gnutls_cipher_decrypt2 (gnutls_cipher_hd_t
handle, const void *
ciphertext, size_t
ciphertextlen, void *
text, size_t
textlen)
gnutls_cipher_set_iv (gnutls_cipher_hd_t
handle, void *
iv, size_t
ivlen)
gnutls_cipher_deinit (gnutls_cipher_hd_t
handle)
In order to support authenticated encryption with associated data (AEAD) algorithms the following functions are provided to set the associated data and retrieve the authentication tag.
gnutls_cipher_add_auth (gnutls_cipher_hd_t
handle, const void *
text, size_t
text_size)
gnutls_cipher_tag (gnutls_cipher_hd_t
handle, void *
tag, size_t
tag_size)
Public key cryptography algorithms such as RSA, DSA and ECDSA, can be accessed using the abstract key API in Abstract key types. This is a high level API with the advantage of transparently handling keys in memory and keys present in smart cards.
The available operations to access hash functions and hash-MAC (HMAC) algorithms are shown below. HMAC algorithms provided keyed hash functionality. They supported HMAC algorithms are listed in Table 3.2.
gnutls_hmac_init (gnutls_hmac_hd_t *
dig, gnutls_mac_algorithm_t
algorithm, const void *
key, size_t
keylen)
gnutls_hmac (gnutls_hmac_hd_t
handle, const void *
text, size_t
textlen)
gnutls_hmac_output (gnutls_hmac_hd_t
handle, void *
digest)
gnutls_hmac_deinit (gnutls_hmac_hd_t
handle, void *
digest)
gnutls_hmac_get_len (gnutls_mac_algorithm_t
algorithm)
gnutls_hmac_fast (gnutls_mac_algorithm_t
algorithm, const void *
key, size_t
keylen, const void *
text, size_t
textlen, void *
digest)
The available functions to access hash functions are shown below. The supported hash functions are the same as the HMAC algorithms.
gnutls_hash_init (gnutls_hash_hd_t *
dig, gnutls_digest_algorithm_t
algorithm)
gnutls_hash (gnutls_hash_hd_t
handle, const void *
text, size_t
textlen)
gnutls_hash_output (gnutls_hash_hd_t
handle, void *
digest)
gnutls_hash_deinit (gnutls_hash_hd_t
handle, void *
digest)
gnutls_hash_get_len (gnutls_digest_algorithm_t
algorithm)
gnutls_hash_fast (gnutls_digest_algorithm_t
algorithm, const void *
text, size_t
textlen, void *
digest)
gnutls_fingerprint (gnutls_digest_algorithm_t
algo, const gnutls_datum_t *
data, void *
result, size_t *
result_size)
Access to the random number generator is provided using the gnutls_rnd function. It allows obtaining random data of various levels.
GNUTLS_RND_NONCE
GNUTLS_RND_RANDOM
GNUTLS_RND_KEY
Figure 8.1: The random number levels.
level: a security level
data: place to store random bytes
len: The requested size
This function will generate random data and store it to output buffer.
Returns: Zero or a negative error code on error.
Since: 2.12.0
Included with GnuTLS are also a few command line tools that let you use the library for common tasks without writing an application. The applications are discussed in this chapter.
Simple client program to set up a TLS connection to some other computer. It sets up a TLS connection and forwards data from the standard input to the secured socket and vice versa.
This section was generated by AutoGen,
using the agtexi-cmd
template and the option descriptions for the gnutls-cli
program.
This software is released under the GNU General Public License, version 3 or later.
This is the automatically generated usage text for gnutls-cli.
The text printed is the same whether selected with the help
option
(--help) or the more-help
option (--more-help). more-help
will print
the usage text by passing it through a pager program.
more-help
is disabled on platforms without a working
fork(2)
function. The PAGER
environment variable is
used to select the program, defaulting to more. Both will exit
with a status code of 0.
gnutls-cli - GnuTLS client Usage: gnutls-cli [ -<flag> [<val>] | --<name>[{=| }<val>] ]... [hostname] -d, --debug=num Enable debugging - it must be in the range: 0 to 9999 -V, --verbose More verbose output - may appear multiple times --tofu Enable trust on first use authentication - disabled as '--no-tofu' --strict-tofu Fail to connect if a known certificate has changed - disabled as '--no-strict-tofu' --dane Enable DANE certificate verification (DNSSEC) - disabled as '--no-dane' --local-dns Use the local DNS server for DNSSEC resolving - disabled as '--no-local-dns' --ca-verification Disable CA certificate verification - disabled as '--no-ca-verification' - enabled by default --ocsp Enable OCSP certificate verification - disabled as '--no-ocsp' -r, --resume Establish a session and resume -e, --rehandshake Establish a session and rehandshake -s, --starttls Connect, establish a plain session and start TLS -u, --udp Use DTLS (datagram TLS) over UDP --mtu=num Set MTU for datagram TLS - it must be in the range: 0 to 17000 --crlf Send CR LF instead of LF --x509fmtder Use DER format for certificates to read from -f, --fingerprint Send the openpgp fingerprint, instead of the key --print-cert Print peer's certificate in PEM format --dh-bits=num The minimum number of bits allowed for DH --priority=str Priorities string --x509cafile=str Certificate file or PKCS #11 URL to use --x509crlfile=file CRL file to use - file must pre-exist --pgpkeyfile=file PGP Key file to use - file must pre-exist --pgpkeyring=file PGP Key ring file to use - file must pre-exist --pgpcertfile=file PGP Public Key (certificate) file to use - file must pre-exist --x509keyfile=str X.509 key file or PKCS #11 URL to use --x509certfile=str X.509 Certificate file or PKCS #11 URL to use --pgpsubkey=str PGP subkey to use (hex or auto) --srpusername=str SRP username to use --srppasswd=str SRP password to use --pskusername=str PSK username to use --pskkey=str PSK key (in hex) to use -p, --port=str The port or service to connect to --insecure Don't abort program if server certificate can't be validated --ranges Use length-hiding padding to prevent traffic analysis --benchmark-ciphers Benchmark individual ciphers --benchmark-tls-kx Benchmark TLS key exchange methods --benchmark-tls-ciphers Benchmark TLS ciphers -l, --list Print a list of the supported algorithms and modes --noticket Don't allow session tickets --srtp-profiles=str Offer SRTP profiles --alpn=str Application layer protocol - may appear multiple times -b, --heartbeat Activate heartbeat support -!, --recordsize=num The maximum record size to advertize - it must be in the range: 0 to 4096 -", --disable-sni Do not send a Server Name Indication (SNI) -#, --disable-extensions Disable all the TLS extensions -$, --inline-commands Inline commands of the form ^<cmd>^ -%, --inline-commands-prefix=str Change the default (^) used as a delimiter for inline commands. The value is a single US-ASCII character (octets 0 - 127). -&, --provider=file Specify the PKCS #11 provider library - file must pre-exist -', --fips140-mode Reports the status of the FIPS140-2 mode in gnutls library -v, --version[=arg] output version information and exit -h, --help display extended usage information and exit -!, --more-help extended usage information passed thru pager Options are specified by doubled hyphens and their name or by a single hyphen and the flag character. Operands and options may be intermixed. They will be reordered. Simple client program to set up a TLS connection to some other computer. It sets up a TLS connection and forwards data from the standard input to the secured socket and vice versa.
This is the “enable debugging” option. This option takes a number argument. Specifies the debug level.
This is the “enable trust on first use authentication” option.
This option has some usage constraints. It:
This option will, in addition to certificate authentication, perform authentication based on previously seen public keys, a model similar to SSH authentication. Note that when tofu is specified (PKI) and DANE authentication will become advisory to assist the public key acceptance process.
This is the “fail to connect if a known certificate has changed” option.
This option has some usage constraints. It:
This option will perform authentication as with option –tofu; however, while –tofu asks whether to trust a changed public key, this option will fail in case of public key changes.
This is the “enable dane certificate verification (dnssec)” option.
This option has some usage constraints. It:
This option will, in addition to certificate authentication using the trusted CAs, verify the server certificates using on the DANE information available via DNSSEC.
This is the “use the local dns server for dnssec resolving” option.
This option has some usage constraints. It:
This option will use the local DNS server for DNSSEC. This is disabled by default due to many servers not allowing DNSSEC.
This is the “disable ca certificate verification” option.
This option has some usage constraints. It:
This option will disable CA certificate verification. It is to be used with the –dane or –tofu options.
This is the “enable ocsp certificate verification” option.
This option has some usage constraints. It:
This option will enable verification of the peer's certificate using ocsp
This is the “establish a session and resume” option. Connect, establish a session, reconnect and resume.
This is the “establish a session and rehandshake” option. Connect, establish a session and rehandshake immediately.
This is the “connect, establish a plain session and start tls” option. The TLS session will be initiated when EOF or a SIGALRM is received.
This is the “the minimum number of bits allowed for dh” option. This option takes a number argument. This option sets the minimum number of bits allowed for a Diffie-Hellman key exchange. You may want to lower the default value if the peer sends a weak prime and you get an connection error with unacceptable prime.
This is the “priorities string” option. This option takes a string argument. TLS algorithms and protocols to enable. You can use predefined sets of ciphersuites such as PERFORMANCE, NORMAL, PFS, SECURE128, SECURE256. The default is NORMAL.
Check the GnuTLS manual on section “Priority strings” for more information on the allowed keywords
This is the “use length-hiding padding to prevent traffic analysis” option. When possible (e.g., when using CBC ciphersuites), use length-hiding padding to prevent traffic analysis.
This is the “print a list of the supported algorithms and modes” option. Print a list of the supported algorithms and modes. If a priority string is given then only the enabled ciphersuites are shown.
This is the “application layer protocol” option. This option takes a string argument.
This option has some usage constraints. It:
This option will set and enable the Application Layer Protocol Negotiation (ALPN) in the TLS protocol.
This is the “disable all the tls extensions” option. This option disables all TLS extensions. Deprecated option. Use the priority string.
This is the “inline commands of the form ^<cmd>^” option. Enable inline commands of the form ^<cmd>^. The inline commands are expected to be in a line by themselves. The available commands are: resume and renegotiate.
This is the “change the default (^) used as a delimiter for inline commands. the value is a single us-ascii character (octets 0 - 127).” option. This option takes a string argument. Change the default (^) delimiter used for inline commands. The delimiter is expected to be a single US-ASCII character (octets 0 - 127). This option is only relevant if inline commands are enabled via the inline-commands option
This is the “specify the pkcs #11 provider library” option. This option takes a file argument. This will override the default options in /etc/gnutls/pkcs11.conf
One of the following exit values will be returned:
gnutls-cli-debug(1), gnutls-serv(1)
To connect to a server using PSK authentication, you need to enable the choice of PSK by using a cipher priority parameter such as in the example below.
$ ./gnutls-cli -p 5556 localhost --pskusername psk_identity \ --pskkey 88f3824b3e5659f52d00e959bacab954b6540344 \ --priority NORMAL:-KX-ALL:+ECDHE-PSK:+DHE-PSK:+PSK Resolving 'localhost'... Connecting to '127.0.0.1:5556'... - PSK authentication. - Version: TLS1.1 - Key Exchange: PSK - Cipher: AES-128-CBC - MAC: SHA1 - Compression: NULL - Handshake was completed - Simple Client Mode:
By keeping the –pskusername parameter and removing the –pskkey parameter, it will query only for the password during the handshake.
To list the ciphersuites in a priority string:
$ ./gnutls-cli --priority SECURE192 -l Cipher suites for SECURE192 TLS_ECDHE_ECDSA_AES_256_CBC_SHA384 0xc0, 0x24 TLS1.2 TLS_ECDHE_ECDSA_AES_256_GCM_SHA384 0xc0, 0x2e TLS1.2 TLS_ECDHE_RSA_AES_256_GCM_SHA384 0xc0, 0x30 TLS1.2 TLS_DHE_RSA_AES_256_CBC_SHA256 0x00, 0x6b TLS1.2 TLS_DHE_DSS_AES_256_CBC_SHA256 0x00, 0x6a TLS1.2 TLS_RSA_AES_256_CBC_SHA256 0x00, 0x3d TLS1.2 Certificate types: CTYPE-X.509 Protocols: VERS-TLS1.2, VERS-TLS1.1, VERS-TLS1.0, VERS-SSL3.0, VERS-DTLS1.0 Compression: COMP-NULL Elliptic curves: CURVE-SECP384R1, CURVE-SECP521R1 PK-signatures: SIGN-RSA-SHA384, SIGN-ECDSA-SHA384, SIGN-RSA-SHA512, SIGN-ECDSA-SHA512
To connect to a server using a certificate and a private key present in a PKCS #11 token you need to substitute the PKCS 11 URLs in the x509certfile and x509keyfile parameters.
Those can be found using "p11tool –list-tokens" and then listing all the objects in the needed token, and using the appropriate.
$ p11tool --list-tokens Token 0: URL: pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test Label: Test Manufacturer: EnterSafe Model: PKCS15 Serial: 1234 $ p11tool --login --list-certs "pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test" Object 0: URL: pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test;object=client;object-type=cert Type: X.509 Certificate Label: client ID: 2a:97:0d:58:d1:51:3c:23:07:ae:4e:0d:72:26:03:7d:99:06:02:6a $ export MYCERT="pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test;object=client;object-type=cert" $ export MYKEY="pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test;object=client;object-type=private" $ gnutls-cli www.example.com --x509keyfile $MYKEY --x509certfile MYCERT
Notice that the private key only differs from the certificate in the object-type.
Server program that listens to incoming TLS connections.
This section was generated by AutoGen,
using the agtexi-cmd
template and the option descriptions for the gnutls-serv
program.
This software is released under the GNU General Public License, version 3 or later.
This is the automatically generated usage text for gnutls-serv.
The text printed is the same whether selected with the help
option
(--help) or the more-help
option (--more-help). more-help
will print
the usage text by passing it through a pager program.
more-help
is disabled on platforms without a working
fork(2)
function. The PAGER
environment variable is
used to select the program, defaulting to more. Both will exit
with a status code of 0.
gnutls-serv - GnuTLS server Usage: gnutls-serv [ -<flag> [<val>] | --<name>[{=| }<val>] ]... -d, --debug=num Enable debugging - it must be in the range: 0 to 9999 --noticket Don't accept session tickets -g, --generate Generate Diffie-Hellman and RSA-export parameters -q, --quiet Suppress some messages --nodb Do not use a resumption database --http Act as an HTTP server --echo Act as an Echo server -u, --udp Use DTLS (datagram TLS) over UDP --mtu=num Set MTU for datagram TLS - it must be in the range: 0 to 17000 --srtp-profiles=str Offer SRTP profiles -a, --disable-client-cert Do not request a client certificate -r, --require-client-cert Require a client certificate --verify-client-cert If a client certificate is sent then verify it. -b, --heartbeat Activate heartbeat support --x509fmtder Use DER format for certificates to read from --priority=str Priorities string --dhparams=file DH params file to use - file must pre-exist --x509cafile=str Certificate file or PKCS #11 URL to use --x509crlfile=file CRL file to use - file must pre-exist --pgpkeyfile=file PGP Key file to use - file must pre-exist --pgpkeyring=file PGP Key ring file to use - file must pre-exist --pgpcertfile=file PGP Public Key (certificate) file to use - file must pre-exist --x509keyfile=str X.509 key file or PKCS #11 URL to use --x509certfile=str X.509 Certificate file or PKCS #11 URL to use --x509dsakeyfile=str Alternative X.509 key file or PKCS #11 URL to use --x509dsacertfile=str Alternative X.509 Certificate file or PKCS #11 URL to use --x509ecckeyfile=str Alternative X.509 key file or PKCS #11 URL to use --x509ecccertfile=str Alternative X.509 Certificate file or PKCS #11 URL to use --pgpsubkey=str PGP subkey to use (hex or auto) --srppasswd=file SRP password file to use - file must pre-exist --srppasswdconf=file SRP password configuration file to use - file must pre-exist --pskpasswd=file PSK password file to use - file must pre-exist --pskhint=str PSK identity hint to use --ocsp-response=file The OCSP response to send to client - file must pre-exist -p, --port=num The port to connect to -l, --list Print a list of the supported algorithms and modes -v, --version[=arg] output version information and exit -h, --help display extended usage information and exit -!, --more-help extended usage information passed thru pager Options are specified by doubled hyphens and their name or by a single hyphen and the flag character. Server program that listens to incoming TLS connections.
This is the “enable debugging” option. This option takes a number argument. Specifies the debug level.
This is the “if a client certificate is sent then verify it.” option. Do not require, but if a client certificate is sent then verify it and close the connection if invalid.
This is the “activate heartbeat support” option. Regularly ping client via heartbeat extension messages
This is the “priorities string” option. This option takes a string argument. TLS algorithms and protocols to enable. You can use predefined sets of ciphersuites such as PERFORMANCE, NORMAL, SECURE128, SECURE256. The default is NORMAL.
Check the GnuTLS manual on section “Priority strings” for more information on allowed keywords
This is the “the ocsp response to send to client” option. This option takes a file argument. If the client requested an OCSP response, return data from this file to the client.
This is the “print a list of the supported algorithms and modes” option. Print a list of the supported algorithms and modes. If a priority string is given then only the enabled ciphersuites are shown.
One of the following exit values will be returned:
gnutls-cli-debug(1), gnutls-cli(1)
Running your own TLS server based on GnuTLS can be useful when
debugging clients and/or GnuTLS itself. This section describes how to
use gnutls-serv
as a simple HTTPS server.
The most basic server can be started as:
gnutls-serv --http --priority "NORMAL:+ANON-ECDH:+ANON-DH"
It will only support anonymous ciphersuites, which many TLS clients refuse to use.
The next step is to add support for X.509. First we generate a CA:
$ certtool --generate-privkey > x509-ca-key.pem $ echo 'cn = GnuTLS test CA' > ca.tmpl $ echo 'ca' >> ca.tmpl $ echo 'cert_signing_key' >> ca.tmpl $ certtool --generate-self-signed --load-privkey x509-ca-key.pem \ --template ca.tmpl --outfile x509-ca.pem ...
Then generate a server certificate. Remember to change the dns_name value to the name of your server host, or skip that command to avoid the field.
$ certtool --generate-privkey > x509-server-key.pem $ echo 'organization = GnuTLS test server' > server.tmpl $ echo 'cn = test.gnutls.org' >> server.tmpl $ echo 'tls_www_server' >> server.tmpl $ echo 'encryption_key' >> server.tmpl $ echo 'signing_key' >> server.tmpl $ echo 'dns_name = test.gnutls.org' >> server.tmpl $ certtool --generate-certificate --load-privkey x509-server-key.pem \ --load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \ --template server.tmpl --outfile x509-server.pem ...
For use in the client, you may want to generate a client certificate as well.
$ certtool --generate-privkey > x509-client-key.pem $ echo 'cn = GnuTLS test client' > client.tmpl $ echo 'tls_www_client' >> client.tmpl $ echo 'encryption_key' >> client.tmpl $ echo 'signing_key' >> client.tmpl $ certtool --generate-certificate --load-privkey x509-client-key.pem \ --load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \ --template client.tmpl --outfile x509-client.pem ...
To be able to import the client key/certificate into some applications, you will need to convert them into a PKCS#12 structure. This also encrypts the security sensitive key with a password.
$ certtool --to-p12 --load-ca-certificate x509-ca.pem \ --load-privkey x509-client-key.pem --load-certificate x509-client.pem \ --outder --outfile x509-client.p12
For icing, we'll create a proxy certificate for the client too.
$ certtool --generate-privkey > x509-proxy-key.pem $ echo 'cn = GnuTLS test client proxy' > proxy.tmpl $ certtool --generate-proxy --load-privkey x509-proxy-key.pem \ --load-ca-certificate x509-client.pem --load-ca-privkey x509-client-key.pem \ --load-certificate x509-client.pem --template proxy.tmpl \ --outfile x509-proxy.pem ...
Then start the server again:
$ gnutls-serv --http \ --x509cafile x509-ca.pem \ --x509keyfile x509-server-key.pem \ --x509certfile x509-server.pem
Try connecting to the server using your web browser. Note that the server listens to port 5556 by default.
While you are at it, to allow connections using DSA, you can also create a DSA key and certificate for the server. These credentials will be used in the final example below.
$ certtool --generate-privkey --dsa > x509-server-key-dsa.pem $ certtool --generate-certificate --load-privkey x509-server-key-dsa.pem \ --load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \ --template server.tmpl --outfile x509-server-dsa.pem ...
The next step is to create OpenPGP credentials for the server.
gpg --gen-key ...enter whatever details you want, use 'test.gnutls.org' as name...
Make a note of the OpenPGP key identifier of the newly generated key,
here it was 5D1D14D8
. You will need to export the key for
GnuTLS to be able to use it.
gpg -a --export 5D1D14D8 > openpgp-server.txt gpg --export 5D1D14D8 > openpgp-server.bin gpg --export-secret-keys 5D1D14D8 > openpgp-server-key.bin gpg -a --export-secret-keys 5D1D14D8 > openpgp-server-key.txt
Let's start the server with support for OpenPGP credentials:
gnutls-serv --http --priority NORMAL:+CTYPE-OPENPGP \ --pgpkeyfile openpgp-server-key.txt \ --pgpcertfile openpgp-server.txt
The next step is to add support for SRP authentication. This requires
an SRP password file created with srptool
.
To start the server with SRP support:
gnutls-serv --http --priority NORMAL:+SRP-RSA:+SRP \ --srppasswdconf srp-tpasswd.conf \ --srppasswd srp-passwd.txt
Let's also start a server with support for PSK. This would require
a password file created with psktool
.
gnutls-serv --http --priority NORMAL:+ECDHE-PSK:+PSK \ --pskpasswd psk-passwd.txt
Finally, we start the server with all the earlier parameters and you get this command:
gnutls-serv --http --priority NORMAL:+PSK:+SRP:+CTYPE-OPENPGP \ --x509cafile x509-ca.pem \ --x509keyfile x509-server-key.pem \ --x509certfile x509-server.pem \ --x509dsakeyfile x509-server-key-dsa.pem \ --x509dsacertfile x509-server-dsa.pem \ --pgpkeyfile openpgp-server-key.txt \ --pgpcertfile openpgp-server.txt \ --srppasswdconf srp-tpasswd.conf \ --srppasswd srp-passwd.txt \ --pskpasswd psk-passwd.txt
TLS debug client. It sets up multiple TLS connections to a server and queries its capabilities. It was created to assist in debugging GnuTLS, but it might be useful to extract a TLS server's capabilities. It connects to a TLS server, performs tests and print the server's capabilities. If called with the `-v' parameter more checks will be performed. Can be used to check for servers with special needs or bugs.
This section was generated by AutoGen,
using the agtexi-cmd
template and the option descriptions for the gnutls-cli-debug
program.
This software is released under the GNU General Public License, version 3 or later.
This is the automatically generated usage text for gnutls-cli-debug.
The text printed is the same whether selected with the help
option
(--help) or the more-help
option (--more-help). more-help
will print
the usage text by passing it through a pager program.
more-help
is disabled on platforms without a working
fork(2)
function. The PAGER
environment variable is
used to select the program, defaulting to more. Both will exit
with a status code of 0.
gnutls-cli-debug - GnuTLS debug client Usage: gnutls-cli-debug [ -<flag> [<val>] | --<name>[{=| }<val>] ]... -d, --debug=num Enable debugging - it must be in the range: 0 to 9999 -V, --verbose More verbose output - may appear multiple times -p, --port=num The port to connect to - it must be in the range: 0 to 65536 --app-proto=str The application protocol to be used to obtain the server's certificate (https, smtp, imap) -v, --version[=arg] output version information and exit -h, --help display extended usage information and exit -!, --more-help extended usage information passed thru pager Options are specified by doubled hyphens and their name or by a single hyphen and the flag character. Operands and options may be intermixed. They will be reordered. TLS debug client. It sets up multiple TLS connections to a server and queries its capabilities. It was created to assist in debugging GnuTLS, but it might be useful to extract a TLS server's capabilities. It connects to a TLS server, performs tests and print the server's capabilities. If called with the `-v' parameter more checks will be performed. Can be used to check for servers with special needs or bugs.
This is the “enable debugging” option. This option takes a number argument. Specifies the debug level.
One of the following exit values will be returned:
$ ../src/gnutls-cli-debug localhost Resolving 'localhost'... Connecting to '127.0.0.1:443'... Checking for SSL 3.0 support... yes Checking whether %COMPAT is required... no Checking for TLS 1.0 support... yes Checking for TLS 1.1 support... no Checking fallback from TLS 1.1 to... TLS 1.0 Checking for TLS 1.2 support... no Checking whether we need to disable TLS 1.0... N/A Checking for Safe renegotiation support... yes Checking for Safe renegotiation support (SCSV)... yes Checking for HTTPS server name... not checked Checking for version rollback bug in RSA PMS... no Checking for version rollback bug in Client Hello... no Checking whether the server ignores the RSA PMS version... no Checking whether the server can accept Hello Extensions... yes Checking whether the server can accept small records (512 bytes)... yes Checking whether the server can accept cipher suites not in SSL 3.0 spec... yes Checking whether the server can accept a bogus TLS record version in the client hello... yes Checking for certificate information... N/A Checking for trusted CAs... N/A Checking whether the server understands TLS closure alerts... partially Checking whether the server supports session resumption... yes Checking for export-grade ciphersuite support... no Checking RSA-export ciphersuite info... N/A Checking for anonymous authentication support... no Checking anonymous Diffie-Hellman group info... N/A Checking for ephemeral Diffie-Hellman support... no Checking ephemeral Diffie-Hellman group info... N/A Checking for ephemeral EC Diffie-Hellman support... yes Checking ephemeral EC Diffie-Hellman group info... Curve SECP256R1 Checking for AES-GCM cipher support... no Checking for AES-CBC cipher support... yes Checking for CAMELLIA cipher support... no Checking for 3DES-CBC cipher support... yes Checking for ARCFOUR 128 cipher support... yes Checking for ARCFOUR 40 cipher support... no Checking for MD5 MAC support... yes Checking for SHA1 MAC support... yes Checking for SHA256 MAC support... no Checking for ZLIB compression support... no Checking for max record size... no Checking for OpenPGP authentication support... no
This chapter is to give a brief description of the way GnuTLS works. The focus is to give an idea to potential developers and those who want to know what happens inside the black box.
The main use case for the TLS protocol is shown in fig-client-server. A user of a library implementing the protocol expects no less than this functionality, i.e., to be able to set parameters such as the accepted security level, perform a negotiation with the peer and be able to exchange data.
The GnuTLS handshake protocol is implemented as a state machine that waits for input or returns immediately when the non-blocking transport layer functions are used. The main idea is shown in fig-gnutls-handshake.
Also the way the input is processed varies per ciphersuite. Several
implementations of the internal handlers are available and
gnutls_handshake only multiplexes the input to the appropriate
handler. For example a PSK ciphersuite has a different
implementation of the process_client_key_exchange
than a
certificate ciphersuite. We illustrate the idea in fig-gnutls-handshake-sequence.
In GnuTLS authentication methods can be implemented quite easily. Since the required changes to add a new authentication method affect only the handshake protocol, a simple interface is used. An authentication method needs to implement the functions shown below.
typedef struct { const char *name; int (*gnutls_generate_server_certificate) (gnutls_session_t, gnutls_buffer_st*); int (*gnutls_generate_client_certificate) (gnutls_session_t, gnutls_buffer_st*); int (*gnutls_generate_server_kx) (gnutls_session_t, gnutls_buffer_st*); int (*gnutls_generate_client_kx) (gnutls_session_t, gnutls_buffer_st*); int (*gnutls_generate_client_cert_vrfy) (gnutls_session_t, gnutls_buffer_st *); int (*gnutls_generate_server_certificate_request) (gnutls_session_t, gnutls_buffer_st *); int (*gnutls_process_server_certificate) (gnutls_session_t, opaque *, size_t); int (*gnutls_process_client_certificate) (gnutls_session_t, opaque *, size_t); int (*gnutls_process_server_kx) (gnutls_session_t, opaque *, size_t); int (*gnutls_process_client_kx) (gnutls_session_t, opaque *, size_t); int (*gnutls_process_client_cert_vrfy) (gnutls_session_t, opaque *, size_t); int (*gnutls_process_server_certificate_request) (gnutls_session_t, opaque *, size_t); } mod_auth_st;
Those functions are responsible for the
interpretation of the handshake protocol messages. It is common for such
functions to read data from one or more credentials_t
structures15 and write data,
such as certificates, usernames etc. to auth_info_t
structures.
Simple examples of existing authentication methods can be seen in
auth/psk.c
for PSK ciphersuites and auth/srp.c
for SRP
ciphersuites. After implementing these functions the structure holding
its pointers has to be registered in gnutls_algorithms.c
in the
_gnutls_kx_algorithms
structure.
As with authentication methods, the TLS extensions handlers can be implemented using the interface shown below.
typedef int (*gnutls_ext_recv_func) (gnutls_session_t session, const unsigned char *data, size_t len); typedef int (*gnutls_ext_send_func) (gnutls_session_t session, gnutls_buffer_st *extdata);
Here there are two functions, one for receiving the extension data and one for sending. These functions have to check internally whether they operate in client or server side.
A simple example of an extension handler can be seen in
ext/srp.c
in GnuTLS' source code. After implementing these functions,
together with the extension number they handle, they have to be registered
using _gnutls_ext_register
in
gnutls_extensions.c
typically within _gnutls_ext_init
.
Adding support for a new TLS extension is done from time to time, and
the process to do so is not difficult. Here are the steps you need to
follow if you wish to do this yourself. For sake of discussion, let's
consider adding support for the hypothetical TLS extension
foobar
.
configure
option like --enable-foobar
or --disable-foobar
.This step is useful when the extension code is large and it might be desirable to disable the extension under some circumstances. Otherwise it can be safely skipped.
Whether to chose enable or disable depends on whether you intend to make the extension be enabled by default. Look at existing checks (i.e., SRP, authz) for how to model the code. For example:
AC_MSG_CHECKING([whether to disable foobar support]) AC_ARG_ENABLE(foobar, AS_HELP_STRING([--disable-foobar], [disable foobar support]), ac_enable_foobar=no) if test x$ac_enable_foobar != xno; then AC_MSG_RESULT(no) AC_DEFINE(ENABLE_FOOBAR, 1, [enable foobar]) else ac_full=0 AC_MSG_RESULT(yes) fi AM_CONDITIONAL(ENABLE_FOOBAR, test "$ac_enable_foobar" != "no")
These lines should go in m4/hooks.m4
.
extensions_t
in gnutls_int.h
.A good name for the value would be GNUTLS_EXTENSION_FOOBAR. Check with http://www.iana.org/assignments/tls-extensiontype-values for allocated values. For experiments, you could pick a number but remember that some consider it a bad idea to deploy such modified version since it will lead to interoperability problems in the future when the IANA allocates that number to someone else, or when the foobar protocol is allocated another number.
_gnutls_extensions
in gnutls_extensions.c
.A typical entry would be:
int ret; #if ENABLE_FOOBAR ret = _gnutls_ext_register (&foobar_ext); if (ret != GNUTLS_E_SUCCESS) return ret; #endif
Most likely you'll need to add an #include "ext/foobar.h"
, that
will contain something like
like:
extension_entry_st foobar_ext = { .name = "FOOBAR", .type = GNUTLS_EXTENSION_FOOBAR, .parse_type = GNUTLS_EXT_TLS, .recv_func = _foobar_recv_params, .send_func = _foobar_send_params, .pack_func = _foobar_pack, .unpack_func = _foobar_unpack, .deinit_func = NULL }
The GNUTLS_EXTENSION_FOOBAR is the integer value you added to
gnutls_int.h
earlier. In this structure you specify the
functions to read the extension from the hello message, the function
to send the reply to, and two more functions to pack and unpack from
stored session data (e.g. when resumming a session). The deinit
function
will be called to deinitialize the extension's private parameters, if any.
Note that the conditional ENABLE_FOOBAR
definition should only be
used if step 1 with the configure
options has taken place.
The functions you are responsible to add are those mentioned in the
previous step. They should be added in a file such as ext/foobar.c
and headers should be placed in ext/foobar.h
.
As a starter, you could add this:
int _foobar_recv_params (gnutls_session_t session, const opaque * data, size_t data_size) { return 0; } int _foobar_send_params (gnutls_session_t session, gnutls_buffer_st* data) { return 0; } int _foobar_pack (extension_priv_data_t epriv, gnutls_buffer_st * ps) { /* Append the extension's internal state to buffer */ return 0; } int _foobar_unpack (gnutls_buffer_st * ps, extension_priv_data_t * epriv) { /* Read the internal state from buffer */ return 0; }
The _foobar_recv_params
function is responsible for
parsing incoming extension data (both in the client and server).
The _foobar_send_params
function is responsible for
sending extension data (both in the client and server).
If you receive length fields that don't match, return
GNUTLS_E_UNEXPECTED_PACKET_LENGTH
. If you receive invalid
data, return GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER
. You can use
other error codes from the list in Error codes. Return 0 on success.
An extension typically stores private information in the session
data for later usage. That can be done using the functions
_gnutls_ext_set_session_data
and
_gnutls_ext_get_session_data
. You can check simple examples
at ext/max_record.c
and ext/server_name.c
extensions.
That private information can be saved and restored across session
resumption if the following functions are set:
The _foobar_pack
function is responsible for packing
internal extension data to save them in the session resumption storage.
The _foobar_unpack
function is responsible for
restoring session data from the session resumption storage.
Recall that both the client and server, send and receive parameters, and your code most likely will need to do different things depending on which mode it is in. It may be useful to make this distinction explicit in the code. Thus, for example, a better template than above would be:
int _gnutls_foobar_recv_params (gnutls_session_t session, const opaque * data, size_t data_size) { if (session->security_parameters.entity == GNUTLS_CLIENT) return foobar_recv_client (session, data, data_size); else return foobar_recv_server (session, data, data_size); } int _gnutls_foobar_send_params (gnutls_session_t session, gnutls_buffer_st * data) { if (session->security_parameters.entity == GNUTLS_CLIENT) return foobar_send_client (session, data); else return foobar_send_server (session, data); }
The functions used would be declared as static
functions, of
the appropriate prototype, in the same file.
When adding the files, you'll need to add them to ext/Makefile.am
as well, for example:
if ENABLE_FOOBAR libgnutls_ext_la_SOURCES += ext/foobar.c ext/foobar.h endif
It might be desirable to allow users of the extension to
request use of the extension, or set extension specific data.
This can be implemented by adding extension specific function calls
that can be added to includes/gnutls/gnutls.h
,
as long as the LGPLv2.1+ applies.
The implementation of the function should lie in the ext/foobar.c
file.
To make the API available in the shared library you need to add the
symbol in lib/libgnutls.map
, so that the symbol
is exported properly.
When writing GTK-DOC style documentation for your new APIs, don't
forget to add Since:
tags to indicate the GnuTLS version the
API was introduced in.
TLS handshake extensions allow to send so called supplemental data handshake messages [RFC4680]. This short section explains how to implement a supplemental data handshake message for a given TLS extension.
First of all, modify your extension foobar
in the way, the that
flags
session->security_parameters.do_send_supplemental
and
session->security_parameters.do_recv_supplemental
are set:
int _gnutls_foobar_recv_params (gnutls_session_t session, const opaque * data, size_t _data_size) { ... session->security_parameters.do_recv_supplemental=1; ... } int _gnutls_foobar_send_params (gnutls_session_t session, gnutls_buffer_st *extdata) { ... session->security_parameters.do_send_supplemental=1; ... }
Furthermore add the functions _foobar_supp_recv_params
and _foobar_supp_send_params
to _foobar.h
and
_foobar.c
. The following example code shows how to send a
“Hello World” string in the supplemental data handshake message:
int _foobar_supp_recv_params(gnutls_session_t session, const opaque *data, size_t _data_size) { uint8_t len = _data_size; unsigned char *msg; msg = gnutls_malloc(len); if (msg == NULL) return GNUTLS_E_MEMORY_ERROR; memcpy(msg, data, len); msg[len]='\0'; /* do something with msg */ gnutls_free(msg); return len; } int _foobar_supp_send_params(gnutls_session_t session, gnutls_buffer_st *buf) { unsigned char *msg = "hello world"; int len = strlen(msg); _gnutls_buffer_append_data_prefix(buf, 8, msg, len); return len; }
Afterwards, add the new supplemental data handshake message to
lib/gnutls_supplemental.c
by adding a new entry to the
_gnutls_supplemental[]
structure:
gnutls_supplemental_entry _gnutls_supplemental[] = { {"foobar", GNUTLS_SUPPLEMENTAL_FOOBAR_DATA, _foobar_supp_recv_params, _foobar_supp_send_params}, {0, 0, 0, 0} };
You have to include your foobar.h
header file as well:
#include "foobar.h"
Lastly, add the new supplemental data type to
lib/includes/gnutls/gnutls.h
:
typedef enum { GNUTLS_SUPPLEMENTAL_USER_MAPPING_DATA = 0, GNUTLS_SUPPLEMENTAL_FOOBAR_DATA = 1 } gnutls_supplemental_data_format_type_t;
One such extension is HeartBeat protocol (RFC6520: https://tools.ietf.org/html/rfc6520) implementation. To enable it use option –heartbeat with example client and server supplied with gnutls:
./doc/credentials/gnutls-http-serv --priority "NORMAL:-CIPHER-ALL:+NULL" -d 100 \ --heartbeat --echo ./src/gnutls-cli --priority "NORMAL:-CIPHER-ALL:+NULL" -d 100 localhost -p 5556 \ --insecure --heartbeat
After that pasting
**HEARTBEAT**
command into gnutls-cli will trigger corresponding command on the server and it will send HeartBeat Request with random length to client.
Another way is to run capabilities check with:
./doc/credentials/gnutls-http-serv -d 100 --heartbeat ./src/gnutls-cli-debug localhost -p 5556
Today most new processors, either for embedded or desktop systems include either instructions intended to speed up cryptographic operations, or a co-processor with cryptographic capabilities. Taking advantage of those is a challenging task for every cryptographic application or library. Unfortunately the cryptographic library that GnuTLS is based on takes no advantage of these capabilities. For this reason GnuTLS handles this internally by following a layered approach to accessing cryptographic operations as in fig-crypto-layers.
The TLS layer uses a cryptographic provider layer, that will in turn either
use the default crypto provider – a software crypto library, or use an external
crypto provider, if available in the local system. The reason of handling
the external cryptographic provider in GnuTLS and not delegating it to
the cryptographic libraries, is that none of the supported cryptographic
libraries support /dev/crypto
or CPU-optimized cryptography in
an efficient way.
The Cryptographic library layer, currently supports only libnettle. Older versions of GnuTLS used to support libgcrypt, but it was switched with nettle mainly for performance reasons16 and secondary because it is a simpler library to use. In the future other cryptographic libraries might be supported as well.
Systems that include a cryptographic co-processor, typically come with
kernel drivers to utilize the operations from software. For this reason
GnuTLS provides a layer where each individual algorithm used can be replaced
by another implementation, i.e., the one provided by the driver. The
FreeBSD, OpenBSD and Linux kernels17 include already
a number of hardware assisted implementations, and also provide an interface
to access them, called /dev/crypto
.
GnuTLS will take advantage of this interface if compiled with special
options. That is because in most systems where hardware-assisted
cryptographic operations are not available, using this interface might
actually harm performance.
In systems that include cryptographic instructions with the CPU's
instructions set, using the kernel interface will introduce an
unneeded layer. For this reason GnuTLS includes such optimizations
found in popular processors such as the AES-NI or VIA PADLOCK instruction sets.
This is achieved using a mechanism that detects CPU capabilities and
overrides parts of crypto back-end at runtime.
The next section discusses the registration of a detected algorithm
optimization. For more information please consult the GnuTLS
source code in lib/accelerated/
.
When an optimized implementation of a single algorithm is available,
say a hardware assisted version of AES-CBC then the
following (internal) functions, from crypto-backend.h
, can
be used to register those algorithms.
gnutls_crypto_single_cipher_register
:
To register a cipher algorithm.
gnutls_crypto_single_digest_register
:
To register a hash (digest) or MAC algorithm.
Those registration functions will only replace the specified algorithm and leave the rest of subsystem intact.
In some systems, that might contain a broad acceleration engine, it might be desirable to override big parts of the cryptographic back-end, or even all of them. The following functions are provided for this reason.
gnutls_crypto_cipher_register
:
To override the cryptographic algorithms back-end.
gnutls_crypto_digest_register
:
To override the digest algorithms back-end.
gnutls_crypto_rnd_register
:
To override the random number generator back-end.
gnutls_crypto_bigint_register
:
To override the big number number operations back-end.
gnutls_crypto_pk_register
:
To override the public key encryption back-end. This is tied to the
big number operations so either none or both of them should be overridden.
The GnuTLS library typically maintains binary and source code compatibility across versions. The releases that have the major version increased break binary compatibility but source compatibility is provided. This section lists exceptional cases where changes to existing code are required due to library changes.
GnuTLS 2.12.x is binary compatible with previous versions but changes the
semantics of gnutls_transport_set_lowat
, which might cause breakage
in applications that relied on its default value be 1. Two fixes
are proposed:
gnutls_transport_set_lowat (session, 1);
after gnutls_init.
select
to check for gnutls pending data, the
function gnutls_record_check_pending has to be used to achieve the same
functionality as described in Asynchronous operation.
GnuTLS 3.0.x is source compatible with previous versions except for the functions listed below.
Old function | Replacement
|
---|---|
gnutls_transport_set_lowat |
To replace its functionality the function gnutls_record_check_pending has to be used,
as described in Asynchronous operation
|
gnutls_session_get_server_random ,
gnutls_session_get_client_random
|
They are replaced by the safer function gnutls_session_get_random
|
gnutls_session_get_master_secret
| Replaced by the keying material exporters discussed in Deriving keys for other applications/protocols
|
gnutls_transport_set_global_errno
| Replaced by using the system's errno fascility or gnutls_transport_set_errno.
|
gnutls_x509_privkey_verify_data
| Replaced by gnutls_pubkey_verify_data.
|
gnutls_certificate_verify_peers
| Replaced by gnutls_certificate_verify_peers2.
|
gnutls_psk_netconf_derive_key
| Removed. The key derivation function was never standardized.
|
gnutls_session_set_finished_function
| Removed.
|
gnutls_ext_register
| Removed. Extension registration API is now internal to allow easier changes in the API.
|
gnutls_certificate_get_x509_crls , gnutls_certificate_get_x509_cas
| Removed to allow updating the internal structures. Replaced by gnutls_certificate_get_issuer.
|
gnutls_certificate_get_openpgp_keyring
| Removed.
|
gnutls_ia_
| Removed. The inner application extensions were completely removed (they failed to be standardized).
|
GnuTLS 3.1.x is source and binary compatible with GnuTLS 3.0.x releases. Few functions have been deprecated and are listed below.
Old function | Replacement
|
---|---|
gnutls_pubkey_verify_hash
| The function gnutls_pubkey_verify_hash2 is provided and
is functionally equivalent and safer to use.
|
gnutls_pubkey_verify_data
| The function gnutls_pubkey_verify_data2 is provided and
is functionally equivalent and safer to use.
|
GnuTLS 3.2.x is source and binary compatible with GnuTLS 3.1.x releases. Few functions have been deprecated and are listed below.
Old function | Replacement
|
---|---|
gnutls_privkey_sign_raw_data
| The function gnutls_privkey_sign_hash is equivalent
when the flag GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA is specified.
|
GnuTLS 3.3.x is source and binary compatible with GnuTLS 3.2.x releases; however there few changes in semantics which are listed below.
Old function | Replacement
|
---|---|
gnutls_global_init
| No longer required. The library is initialized using a constructor.
|
gnutls_global_deinit
| No longer required. The library is deinitialized using a destructor.
|
A mailing list where users may help each other exists, and you can reach it by sending e-mail to gnutls-help@gnutls.org. Archives of the mailing list discussions, and an interface to manage subscriptions, is available through the World Wide Web at http://lists.gnutls.org/pipermail/gnutls-help/.
A mailing list for developers are also available, see http://www.gnutls.org/lists.html. Bug reports should be sent to bugs@gnutls.org, see Bug Reports.
Commercial support is available for users of GnuTLS. The kind of support that can be purchased may include:
If you are interested, please write to:
Simon Josefsson Datakonsult Hagagatan 24 113 47 Stockholm Sweden E-mail: simon@josefsson.org
If your company provides support related to GnuTLS and would like to be mentioned here, contact the authors.
If you think you have found a bug in GnuTLS, please investigate it and report it.
Please make an effort to produce a self-contained report, with something definite that can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and don't help the development effort.
If your bug report is good, we will do our best to help you to get a corrected version of the software; if the bug report is poor, we won't do anything about it (apart from asking you to send better bug reports).
If you think something in this manual is unclear, or downright incorrect, or if the language needs to be improved, please also send a note.
Send your bug report to:
If you want to submit a patch for inclusion – from solving a typo you discovered, up to adding support for a new feature – you should submit it as a bug report, using the process in Bug Reports. There are some things that you can do to increase the chances for it to be included in the official package.
Unless your patch is very small (say, under 10 lines) we require that you assign the copyright of your work to the Free Software Foundation. This is to protect the freedom of the project. If you have not already signed papers, we will send you the necessary information when you submit your contribution.
For contributions that doesn't consist of actual programming code, the only guidelines are common sense. For code contributions, a number of style guides will help you:
If you normally code using another coding standard, there is no problem, but you should use ‘indent’ to reformat the code before submitting your work.
Many cryptographic libraries claim certifications from national or international bodies. These certifications are tied on a specific (and often restricted) version of the library or a specific product using the library, and typically in the case of software they assure that the algorithms implemented are correct. The major certifications known are:
Obtaining such a certification is an expensive and elaborate job that has no immediate value for a continuously developed free software library (as the certification is tied to the particular version tested), and in the case of algorithm verification of FIPS 140-2 it doesn't make much sense as the library is freely available and anyone can verify the correctness of algorithm implementation. As such we are not actively pursuing this kind of certification. If you are, nevertheless, interested, see Commercial Support.
The error codes used throughout the library are described below. The
return code GNUTLS_E_SUCCESS
indicate successful operation, and
is guaranteed to have the value 0, so you can use it in logical
expressions.
0 | GNUTLS_E_SUCCESS | Success.
|
-3 | GNUTLS_E_UNKNOWN_COMPRESSION_ALGORITHM | Could not negotiate a supported compression method.
|
-6 | GNUTLS_E_UNKNOWN_CIPHER_TYPE | The cipher type is unsupported.
|
-7 | GNUTLS_E_LARGE_PACKET | The transmitted packet is too large (EMSGSIZE).
|
-8 | GNUTLS_E_UNSUPPORTED_VERSION_PACKET | A record packet with illegal version was received.
|
-9 | GNUTLS_E_UNEXPECTED_PACKET_LENGTH | A TLS packet with unexpected length was received.
|
-10 | GNUTLS_E_INVALID_SESSION | The specified session has been invalidated for some reason.
|
-12 | GNUTLS_E_FATAL_ALERT_RECEIVED | A TLS fatal alert has been received.
|
-15 | GNUTLS_E_UNEXPECTED_PACKET | An unexpected TLS packet was received.
|
-16 | GNUTLS_E_WARNING_ALERT_RECEIVED | A TLS warning alert has been received.
|
-18 | GNUTLS_E_ERROR_IN_FINISHED_PACKET | An error was encountered at the TLS Finished packet calculation.
|
-19 | GNUTLS_E_UNEXPECTED_HANDSHAKE_PACKET | An unexpected TLS handshake packet was received.
|
-21 | GNUTLS_E_UNKNOWN_CIPHER_SUITE | Could not negotiate a supported cipher suite.
|
-22 | GNUTLS_E_UNWANTED_ALGORITHM | An algorithm that is not enabled was negotiated.
|
-23 | GNUTLS_E_MPI_SCAN_FAILED | The scanning of a large integer has failed.
|
-24 | GNUTLS_E_DECRYPTION_FAILED | Decryption has failed.
|
-25 | GNUTLS_E_MEMORY_ERROR | Internal error in memory allocation.
|
-26 | GNUTLS_E_DECOMPRESSION_FAILED | Decompression of the TLS record packet has failed.
|
-27 | GNUTLS_E_COMPRESSION_FAILED | Compression of the TLS record packet has failed.
|
-28 | GNUTLS_E_AGAIN | Resource temporarily unavailable, try again.
|
-29 | GNUTLS_E_EXPIRED | The requested session has expired.
|
-30 | GNUTLS_E_DB_ERROR | Error in Database backend.
|
-31 | GNUTLS_E_SRP_PWD_ERROR | Error in password file.
|
-32 | GNUTLS_E_INSUFFICIENT_CREDENTIALS | Insufficient credentials for that request.
|
-33 | GNUTLS_E_HASH_FAILED | Hashing has failed.
|
-34 | GNUTLS_E_BASE64_DECODING_ERROR | Base64 decoding error.
|
-35 | GNUTLS_E_MPI_PRINT_FAILED | Could not export a large integer.
|
-37 | GNUTLS_E_REHANDSHAKE | Rehandshake was requested by the peer.
|
-38 | GNUTLS_E_GOT_APPLICATION_DATA | TLS Application data were received, while expecting handshake data.
|
-39 | GNUTLS_E_RECORD_LIMIT_REACHED | The upper limit of record packet sequence numbers has been reached. Wow!
|
-40 | GNUTLS_E_ENCRYPTION_FAILED | Encryption has failed.
|
-43 | GNUTLS_E_CERTIFICATE_ERROR | Error in the certificate.
|
-44 | GNUTLS_E_PK_ENCRYPTION_FAILED | Public key encryption has failed.
|
-45 | GNUTLS_E_PK_DECRYPTION_FAILED | Public key decryption has failed.
|
-46 | GNUTLS_E_PK_SIGN_FAILED | Public key signing has failed.
|
-47 | GNUTLS_E_X509_UNSUPPORTED_CRITICAL_EXTENSION | Unsupported critical extension in X.509 certificate.
|
-48 | GNUTLS_E_KEY_USAGE_VIOLATION | Key usage violation in certificate has been detected.
|
-49 | GNUTLS_E_NO_CERTIFICATE_FOUND | No certificate was found.
|
-50 | GNUTLS_E_INVALID_REQUEST | The request is invalid.
|
-51 | GNUTLS_E_SHORT_MEMORY_BUFFER | The given memory buffer is too short to hold parameters.
|
-52 | GNUTLS_E_INTERRUPTED | Function was interrupted.
|
-53 | GNUTLS_E_PUSH_ERROR | Error in the push function.
|
-54 | GNUTLS_E_PULL_ERROR | Error in the pull function.
|
-55 | GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER | An illegal parameter has been received.
|
-56 | GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE | The requested data were not available.
|
-57 | GNUTLS_E_PKCS1_WRONG_PAD | Wrong padding in PKCS1 packet.
|
-58 | GNUTLS_E_RECEIVED_ILLEGAL_EXTENSION | An illegal TLS extension was received.
|
-59 | GNUTLS_E_INTERNAL_ERROR | GnuTLS internal error.
|
-60 | GNUTLS_E_CERTIFICATE_KEY_MISMATCH | The certificate and the given key do not match.
|
-61 | GNUTLS_E_UNSUPPORTED_CERTIFICATE_TYPE | The certificate type is not supported.
|
-62 | GNUTLS_E_X509_UNKNOWN_SAN | Unknown Subject Alternative name in X.509 certificate.
|
-63 | GNUTLS_E_DH_PRIME_UNACCEPTABLE | The Diffie-Hellman prime sent by the server is not acceptable (not long enough).
|
-64 | GNUTLS_E_FILE_ERROR | Error while reading file.
|
-67 | GNUTLS_E_ASN1_ELEMENT_NOT_FOUND | ASN1 parser: Element was not found.
|
-68 | GNUTLS_E_ASN1_IDENTIFIER_NOT_FOUND | ASN1 parser: Identifier was not found
|
-69 | GNUTLS_E_ASN1_DER_ERROR | ASN1 parser: Error in DER parsing.
|
-70 | GNUTLS_E_ASN1_VALUE_NOT_FOUND | ASN1 parser: Value was not found.
|
-71 | GNUTLS_E_ASN1_GENERIC_ERROR | ASN1 parser: Generic parsing error.
|
-72 | GNUTLS_E_ASN1_VALUE_NOT_VALID | ASN1 parser: Value is not valid.
|
-73 | GNUTLS_E_ASN1_TAG_ERROR | ASN1 parser: Error in TAG.
|
-74 | GNUTLS_E_ASN1_TAG_IMPLICIT | ASN1 parser: error in implicit tag
|
-75 | GNUTLS_E_ASN1_TYPE_ANY_ERROR | ASN1 parser: Error in type 'ANY'.
|
-76 | GNUTLS_E_ASN1_SYNTAX_ERROR | ASN1 parser: Syntax error.
|
-77 | GNUTLS_E_ASN1_DER_OVERFLOW | ASN1 parser: Overflow in DER parsing.
|
-78 | GNUTLS_E_TOO_MANY_EMPTY_PACKETS | Too many empty record packets have been received.
|
-79 | GNUTLS_E_OPENPGP_UID_REVOKED | The OpenPGP User ID is revoked.
|
-80 | GNUTLS_E_UNKNOWN_PK_ALGORITHM | An unknown public key algorithm was encountered.
|
-81 | GNUTLS_E_TOO_MANY_HANDSHAKE_PACKETS | Too many handshake packets have been received.
|
-84 | GNUTLS_E_NO_TEMPORARY_RSA_PARAMS | No temporary RSA parameters were found.
|
-86 | GNUTLS_E_NO_COMPRESSION_ALGORITHMS | No supported compression algorithms have been found.
|
-87 | GNUTLS_E_NO_CIPHER_SUITES | No supported cipher suites have been found.
|
-88 | GNUTLS_E_OPENPGP_GETKEY_FAILED | Could not get OpenPGP key.
|
-89 | GNUTLS_E_PK_SIG_VERIFY_FAILED | Public key signature verification has failed.
|
-90 | GNUTLS_E_ILLEGAL_SRP_USERNAME | The SRP username supplied is illegal.
|
-91 | GNUTLS_E_SRP_PWD_PARSING_ERROR | Parsing error in password file.
|
-93 | GNUTLS_E_NO_TEMPORARY_DH_PARAMS | No temporary DH parameters were found.
|
-94 | GNUTLS_E_OPENPGP_FINGERPRINT_UNSUPPORTED | The OpenPGP fingerprint is not supported.
|
-95 | GNUTLS_E_X509_UNSUPPORTED_ATTRIBUTE | The certificate has unsupported attributes.
|
-96 | GNUTLS_E_UNKNOWN_HASH_ALGORITHM | The hash algorithm is unknown.
|
-97 | GNUTLS_E_UNKNOWN_PKCS_CONTENT_TYPE | The PKCS structure's content type is unknown.
|
-98 | GNUTLS_E_UNKNOWN_PKCS_BAG_TYPE | The PKCS structure's bag type is unknown.
|
-99 | GNUTLS_E_INVALID_PASSWORD | The given password contains invalid characters.
|
-100 | GNUTLS_E_MAC_VERIFY_FAILED | The Message Authentication Code verification failed.
|
-101 | GNUTLS_E_CONSTRAINT_ERROR | Some constraint limits were reached.
|
-102 | GNUTLS_E_WARNING_IA_IPHF_RECEIVED | Received a TLS/IA Intermediate Phase Finished message
|
-103 | GNUTLS_E_WARNING_IA_FPHF_RECEIVED | Received a TLS/IA Final Phase Finished message
|
-104 | GNUTLS_E_IA_VERIFY_FAILED | Verifying TLS/IA phase checksum failed
|
-105 | GNUTLS_E_UNKNOWN_ALGORITHM | The specified algorithm or protocol is unknown.
|
-106 | GNUTLS_E_UNSUPPORTED_SIGNATURE_ALGORITHM | The signature algorithm is not supported.
|
-107 | GNUTLS_E_SAFE_RENEGOTIATION_FAILED | Safe renegotiation failed.
|
-108 | GNUTLS_E_UNSAFE_RENEGOTIATION_DENIED | Unsafe renegotiation denied.
|
-109 | GNUTLS_E_UNKNOWN_SRP_USERNAME | The SRP username supplied is unknown.
|
-110 | GNUTLS_E_PREMATURE_TERMINATION | The TLS connection was non-properly terminated.
|
-201 | GNUTLS_E_BASE64_ENCODING_ERROR | Base64 encoding error.
|
-202 | GNUTLS_E_INCOMPATIBLE_GCRYPT_LIBRARY | The crypto library version is too old.
|
-203 | GNUTLS_E_INCOMPATIBLE_LIBTASN1_LIBRARY | The tasn1 library version is too old.
|
-204 | GNUTLS_E_OPENPGP_KEYRING_ERROR | Error loading the keyring.
|
-205 | GNUTLS_E_X509_UNSUPPORTED_OID | The OID is not supported.
|
-206 | GNUTLS_E_RANDOM_FAILED | Failed to acquire random data.
|
-207 | GNUTLS_E_BASE64_UNEXPECTED_HEADER_ERROR | Base64 unexpected header error.
|
-208 | GNUTLS_E_OPENPGP_SUBKEY_ERROR | Could not find OpenPGP subkey.
|
-209 | GNUTLS_E_CRYPTO_ALREADY_REGISTERED | There is already a crypto algorithm with lower priority.
|
-210 | GNUTLS_E_HANDSHAKE_TOO_LARGE | The handshake data size is too large.
|
-211 | GNUTLS_E_CRYPTODEV_IOCTL_ERROR | Error interfacing with /dev/crypto
|
-212 | GNUTLS_E_CRYPTODEV_DEVICE_ERROR | Error opening /dev/crypto
|
-213 | GNUTLS_E_CHANNEL_BINDING_NOT_AVAILABLE | Channel binding data not available
|
-214 | GNUTLS_E_BAD_COOKIE | The cookie was bad.
|
-215 | GNUTLS_E_OPENPGP_PREFERRED_KEY_ERROR | The OpenPGP key has not a preferred key set.
|
-216 | GNUTLS_E_INCOMPAT_DSA_KEY_WITH_TLS_PROTOCOL | The given DSA key is incompatible with the selected TLS protocol.
|
-292 | GNUTLS_E_HEARTBEAT_PONG_RECEIVED | A heartbeat pong message was received.
|
-293 | GNUTLS_E_HEARTBEAT_PING_RECEIVED | A heartbeat ping message was received.
|
-300 | GNUTLS_E_PKCS11_ERROR | PKCS #11 error.
|
-301 | GNUTLS_E_PKCS11_LOAD_ERROR | PKCS #11 initialization error.
|
-302 | GNUTLS_E_PARSING_ERROR | Error in parsing.
|
-303 | GNUTLS_E_PKCS11_PIN_ERROR | Error in provided PIN.
|
-305 | GNUTLS_E_PKCS11_SLOT_ERROR | PKCS #11 error in slot
|
-306 | GNUTLS_E_LOCKING_ERROR | Thread locking error
|
-307 | GNUTLS_E_PKCS11_ATTRIBUTE_ERROR | PKCS #11 error in attribute
|
-308 | GNUTLS_E_PKCS11_DEVICE_ERROR | PKCS #11 error in device
|
-309 | GNUTLS_E_PKCS11_DATA_ERROR | PKCS #11 error in data
|
-310 | GNUTLS_E_PKCS11_UNSUPPORTED_FEATURE_ERROR | PKCS #11 unsupported feature
|
-311 | GNUTLS_E_PKCS11_KEY_ERROR | PKCS #11 error in key
|
-312 | GNUTLS_E_PKCS11_PIN_EXPIRED | PKCS #11 PIN expired
|
-313 | GNUTLS_E_PKCS11_PIN_LOCKED | PKCS #11 PIN locked
|
-314 | GNUTLS_E_PKCS11_SESSION_ERROR | PKCS #11 error in session
|
-315 | GNUTLS_E_PKCS11_SIGNATURE_ERROR | PKCS #11 error in signature
|
-316 | GNUTLS_E_PKCS11_TOKEN_ERROR | PKCS #11 error in token
|
-317 | GNUTLS_E_PKCS11_USER_ERROR | PKCS #11 user error
|
-318 | GNUTLS_E_CRYPTO_INIT_FAILED | The initialization of crypto backend has failed.
|
-319 | GNUTLS_E_TIMEDOUT | The operation timed out
|
-320 | GNUTLS_E_USER_ERROR | The operation was cancelled due to user error
|
-321 | GNUTLS_E_ECC_NO_SUPPORTED_CURVES | No supported ECC curves were found
|
-322 | GNUTLS_E_ECC_UNSUPPORTED_CURVE | The curve is unsupported
|
-323 | GNUTLS_E_PKCS11_REQUESTED_OBJECT_NOT_AVAILBLE | The requested PKCS #11 object is not available
|
-324 | GNUTLS_E_CERTIFICATE_LIST_UNSORTED | The provided X.509 certificate list is not sorted (in subject to issuer order)
|
-325 | GNUTLS_E_ILLEGAL_PARAMETER | An illegal parameter was found.
|
-326 | GNUTLS_E_NO_PRIORITIES_WERE_SET | No or insufficient priorities were set.
|
-327 | GNUTLS_E_X509_UNSUPPORTED_EXTENSION | Unsupported extension in X.509 certificate.
|
-328 | GNUTLS_E_SESSION_EOF | Peer has terminated the connection
|
-329 | GNUTLS_E_TPM_ERROR | TPM error.
|
-330 | GNUTLS_E_TPM_KEY_PASSWORD_ERROR | Error in provided password for key to be loaded in TPM.
|
-331 | GNUTLS_E_TPM_SRK_PASSWORD_ERROR | Error in provided SRK password for TPM.
|
-332 | GNUTLS_E_TPM_SESSION_ERROR | Cannot initialize a session with the TPM.
|
-333 | GNUTLS_E_TPM_KEY_NOT_FOUND | TPM key was not found in persistent storage.
|
-334 | GNUTLS_E_TPM_UNINITIALIZED | TPM is not initialized.
|
-340 | GNUTLS_E_NO_CERTIFICATE_STATUS | There is no certificate status (OCSP).
|
-341 | GNUTLS_E_OCSP_RESPONSE_ERROR | The OCSP response is invalid
|
-342 | GNUTLS_E_RANDOM_DEVICE_ERROR | Error in the system's randomness device.
|
-343 | GNUTLS_E_AUTH_ERROR | Could not authenticate peer.
|
-344 | GNUTLS_E_NO_APPLICATION_PROTOCOL | No common application protocol could be negotiated.
|
-345 | GNUTLS_E_SOCKETS_INIT_ERROR | Error in sockets initialization.
|
-400 | GNUTLS_E_SELF_TEST_ERROR | Error while performing self checks.
|
-401 | GNUTLS_E_NO_SELF_TEST | There is no self test for this algorithm.
|
-402 | GNUTLS_E_LIB_IN_ERROR_STATE | An error has been detected in the library and cannot continue operations.
|
-403 | GNUTLS_E_PK_GENERATION_ERROR | Error in public key generation.
|
Ciphersuite name | TLS ID | Since
|
---|---|---|
TLS_RSA_NULL_MD5 | 0x00 0x01 | SSL3.0
|
TLS_RSA_NULL_SHA1 | 0x00 0x02 | SSL3.0
|
TLS_RSA_NULL_SHA256 | 0x00 0x3B | TLS1.0
|
TLS_RSA_ARCFOUR_128_SHA1 | 0x00 0x05 | SSL3.0
|
TLS_RSA_ARCFOUR_128_MD5 | 0x00 0x04 | SSL3.0
|
TLS_RSA_3DES_EDE_CBC_SHA1 | 0x00 0x0A | SSL3.0
|
TLS_RSA_AES_128_CBC_SHA1 | 0x00 0x2F | SSL3.0
|
TLS_RSA_AES_256_CBC_SHA1 | 0x00 0x35 | SSL3.0
|
TLS_RSA_CAMELLIA_128_CBC_SHA256 | 0x00 0xBA | TLS1.0
|
TLS_RSA_CAMELLIA_256_CBC_SHA256 | 0x00 0xC0 | TLS1.0
|
TLS_RSA_CAMELLIA_128_CBC_SHA1 | 0x00 0x41 | SSL3.0
|
TLS_RSA_CAMELLIA_256_CBC_SHA1 | 0x00 0x84 | SSL3.0
|
TLS_RSA_AES_128_CBC_SHA256 | 0x00 0x3C | TLS1.0
|
TLS_RSA_AES_256_CBC_SHA256 | 0x00 0x3D | TLS1.0
|
TLS_RSA_AES_128_GCM_SHA256 | 0x00 0x9C | TLS1.2
|
TLS_RSA_AES_256_GCM_SHA384 | 0x00 0x9D | TLS1.2
|
TLS_RSA_CAMELLIA_128_GCM_SHA256 | 0xC0 0x7A | TLS1.2
|
TLS_RSA_CAMELLIA_256_GCM_SHA384 | 0xC0 0x7B | TLS1.2
|
TLS_RSA_SALSA20_256_SHA1 | 0xE4 0x11 | SSL3.0
|
TLS_RSA_ESTREAM_SALSA20_256_SHA1 | 0xE4 0x10 | SSL3.0
|
TLS_DHE_DSS_ARCFOUR_128_SHA1 | 0x00 0x66 | SSL3.0
|
TLS_DHE_DSS_3DES_EDE_CBC_SHA1 | 0x00 0x13 | SSL3.0
|
TLS_DHE_DSS_AES_128_CBC_SHA1 | 0x00 0x32 | SSL3.0
|
TLS_DHE_DSS_AES_256_CBC_SHA1 | 0x00 0x38 | SSL3.0
|
TLS_DHE_DSS_CAMELLIA_128_CBC_SHA256 | 0x00 0xBD | TLS1.0
|
TLS_DHE_DSS_CAMELLIA_256_CBC_SHA256 | 0x00 0xC3 | TLS1.0
|
TLS_DHE_DSS_CAMELLIA_128_CBC_SHA1 | 0x00 0x44 | SSL3.0
|
TLS_DHE_DSS_CAMELLIA_256_CBC_SHA1 | 0x00 0x87 | SSL3.0
|
TLS_DHE_DSS_AES_128_CBC_SHA256 | 0x00 0x40 | TLS1.0
|
TLS_DHE_DSS_AES_256_CBC_SHA256 | 0x00 0x6A | TLS1.0
|
TLS_DHE_DSS_AES_128_GCM_SHA256 | 0x00 0xA2 | TLS1.2
|
TLS_DHE_DSS_AES_256_GCM_SHA384 | 0x00 0xA3 | TLS1.2
|
TLS_DHE_DSS_CAMELLIA_128_GCM_SHA256 | 0xC0 0x80 | TLS1.2
|
TLS_DHE_DSS_CAMELLIA_256_GCM_SHA384 | 0xC0 0x81 | TLS1.2
|
TLS_DHE_RSA_3DES_EDE_CBC_SHA1 | 0x00 0x16 | SSL3.0
|
TLS_DHE_RSA_AES_128_CBC_SHA1 | 0x00 0x33 | SSL3.0
|
TLS_DHE_RSA_AES_256_CBC_SHA1 | 0x00 0x39 | SSL3.0
|
TLS_DHE_RSA_CAMELLIA_128_CBC_SHA256 | 0x00 0xBE | TLS1.0
|
TLS_DHE_RSA_CAMELLIA_256_CBC_SHA256 | 0x00 0xC4 | TLS1.0
|
TLS_DHE_RSA_CAMELLIA_128_CBC_SHA1 | 0x00 0x45 | SSL3.0
|
TLS_DHE_RSA_CAMELLIA_256_CBC_SHA1 | 0x00 0x88 | SSL3.0
|
TLS_DHE_RSA_AES_128_CBC_SHA256 | 0x00 0x67 | TLS1.0
|
TLS_DHE_RSA_AES_256_CBC_SHA256 | 0x00 0x6B | TLS1.0
|
TLS_DHE_RSA_AES_128_GCM_SHA256 | 0x00 0x9E | TLS1.2
|
TLS_DHE_RSA_AES_256_GCM_SHA384 | 0x00 0x9F | TLS1.2
|
TLS_DHE_RSA_CAMELLIA_128_GCM_SHA256 | 0xC0 0x7C | TLS1.2
|
TLS_DHE_RSA_CAMELLIA_256_GCM_SHA384 | 0xC0 0x7D | TLS1.2
|
TLS_ECDHE_RSA_NULL_SHA1 | 0xC0 0x10 | SSL3.0
|
TLS_ECDHE_RSA_3DES_EDE_CBC_SHA1 | 0xC0 0x12 | SSL3.0
|
TLS_ECDHE_RSA_AES_128_CBC_SHA1 | 0xC0 0x13 | SSL3.0
|
TLS_ECDHE_RSA_AES_256_CBC_SHA1 | 0xC0 0x14 | SSL3.0
|
TLS_ECDHE_RSA_AES_256_CBC_SHA384 | 0xC0 0x28 | TLS1.0
|
TLS_ECDHE_RSA_ARCFOUR_128_SHA1 | 0xC0 0x11 | SSL3.0
|
TLS_ECDHE_RSA_CAMELLIA_128_CBC_SHA256 | 0xC0 0x76 | TLS1.0
|
TLS_ECDHE_RSA_CAMELLIA_256_CBC_SHA384 | 0xC0 0x77 | TLS1.0
|
TLS_ECDHE_ECDSA_NULL_SHA1 | 0xC0 0x06 | SSL3.0
|
TLS_ECDHE_ECDSA_3DES_EDE_CBC_SHA1 | 0xC0 0x08 | SSL3.0
|
TLS_ECDHE_ECDSA_AES_128_CBC_SHA1 | 0xC0 0x09 | SSL3.0
|
TLS_ECDHE_ECDSA_AES_256_CBC_SHA1 | 0xC0 0x0A | SSL3.0
|
TLS_ECDHE_ECDSA_ARCFOUR_128_SHA1 | 0xC0 0x07 | SSL3.0
|
TLS_ECDHE_ECDSA_CAMELLIA_128_CBC_SHA256 | 0xC0 0x72 | TLS1.0
|
TLS_ECDHE_ECDSA_CAMELLIA_256_CBC_SHA384 | 0xC0 0x73 | TLS1.0
|
TLS_ECDHE_ECDSA_AES_128_CBC_SHA256 | 0xC0 0x23 | TLS1.0
|
TLS_ECDHE_RSA_AES_128_CBC_SHA256 | 0xC0 0x27 | TLS1.0
|
TLS_ECDHE_ECDSA_CAMELLIA_128_GCM_SHA256 | 0xC0 0x86 | TLS1.2
|
TLS_ECDHE_ECDSA_CAMELLIA_256_GCM_SHA384 | 0xC0 0x87 | TLS1.2
|
TLS_ECDHE_ECDSA_AES_128_GCM_SHA256 | 0xC0 0x2B | TLS1.2
|
TLS_ECDHE_ECDSA_AES_256_GCM_SHA384 | 0xC0 0x2C | TLS1.2
|
TLS_ECDHE_RSA_AES_128_GCM_SHA256 | 0xC0 0x2F | TLS1.2
|
TLS_ECDHE_RSA_AES_256_GCM_SHA384 | 0xC0 0x30 | TLS1.2
|
TLS_ECDHE_ECDSA_AES_256_CBC_SHA384 | 0xC0 0x24 | TLS1.0
|
TLS_ECDHE_RSA_CAMELLIA_128_GCM_SHA256 | 0xC0 0x8A | TLS1.2
|
TLS_ECDHE_RSA_CAMELLIA_256_GCM_SHA384 | 0xC0 0x8B | TLS1.2
|
TLS_ECDHE_RSA_SALSA20_256_SHA1 | 0xE4 0x13 | SSL3.0
|
TLS_ECDHE_ECDSA_SALSA20_256_SHA1 | 0xE4 0x15 | SSL3.0
|
TLS_ECDHE_RSA_ESTREAM_SALSA20_256_SHA1 | 0xE4 0x12 | SSL3.0
|
TLS_ECDHE_ECDSA_ESTREAM_SALSA20_256_SHA1 | 0xE4 0x14 | SSL3.0
|
TLS_ECDHE_PSK_3DES_EDE_CBC_SHA1 | 0xC0 0x34 | SSL3.0
|
TLS_ECDHE_PSK_AES_128_CBC_SHA1 | 0xC0 0x35 | SSL3.0
|
TLS_ECDHE_PSK_AES_256_CBC_SHA1 | 0xC0 0x36 | SSL3.0
|
TLS_ECDHE_PSK_AES_128_CBC_SHA256 | 0xC0 0x37 | TLS1.0
|
TLS_ECDHE_PSK_AES_256_CBC_SHA384 | 0xC0 0x38 | TLS1.0
|
TLS_ECDHE_PSK_ARCFOUR_128_SHA1 | 0xC0 0x33 | SSL3.0
|
TLS_ECDHE_PSK_NULL_SHA1 | 0xC0 0x39 | SSL3.0
|
TLS_ECDHE_PSK_NULL_SHA256 | 0xC0 0x3A | TLS1.0
|
TLS_ECDHE_PSK_NULL_SHA384 | 0xC0 0x3B | TLS1.0
|
TLS_ECDHE_PSK_CAMELLIA_128_CBC_SHA256 | 0xC0 0x9A | TLS1.0
|
TLS_ECDHE_PSK_CAMELLIA_256_CBC_SHA384 | 0xC0 0x9B | TLS1.0
|
TLS_ECDHE_PSK_SALSA20_256_SHA1 | 0xE4 0x19 | SSL3.0
|
TLS_ECDHE_PSK_ESTREAM_SALSA20_256_SHA1 | 0xE4 0x18 | SSL3.0
|
TLS_PSK_ARCFOUR_128_SHA1 | 0x00 0x8A | SSL3.0
|
TLS_PSK_3DES_EDE_CBC_SHA1 | 0x00 0x8B | SSL3.0
|
TLS_PSK_AES_128_CBC_SHA1 | 0x00 0x8C | SSL3.0
|
TLS_PSK_AES_256_CBC_SHA1 | 0x00 0x8D | SSL3.0
|
TLS_PSK_AES_128_CBC_SHA256 | 0x00 0xAE | TLS1.0
|
TLS_PSK_AES_256_GCM_SHA384 | 0x00 0xA9 | TLS1.2
|
TLS_PSK_CAMELLIA_128_GCM_SHA256 | 0xC0 0x8E | TLS1.2
|
TLS_PSK_CAMELLIA_256_GCM_SHA384 | 0xC0 0x8F | TLS1.2
|
TLS_PSK_AES_128_GCM_SHA256 | 0x00 0xA8 | TLS1.2
|
TLS_PSK_NULL_SHA1 | 0x00 0x2C | SSL3.0
|
TLS_PSK_NULL_SHA256 | 0x00 0xB0 | TLS1.0
|
TLS_PSK_CAMELLIA_128_CBC_SHA256 | 0xC0 0x94 | TLS1.0
|
TLS_PSK_CAMELLIA_256_CBC_SHA384 | 0xC0 0x95 | TLS1.0
|
TLS_PSK_SALSA20_256_SHA1 | 0xE4 0x17 | SSL3.0
|
TLS_PSK_ESTREAM_SALSA20_256_SHA1 | 0xE4 0x16 | SSL3.0
|
TLS_PSK_AES_256_CBC_SHA384 | 0x00 0xAF | TLS1.0
|
TLS_PSK_NULL_SHA384 | 0x00 0xB1 | TLS1.0
|
TLS_RSA_PSK_ARCFOUR_128_SHA1 | 0x00 0x92 | TLS1.0
|
TLS_RSA_PSK_3DES_EDE_CBC_SHA1 | 0x00 0x93 | TLS1.0
|
TLS_RSA_PSK_AES_128_CBC_SHA1 | 0x00 0x94 | TLS1.0
|
TLS_RSA_PSK_AES_256_CBC_SHA1 | 0x00 0x95 | TLS1.0
|
TLS_RSA_PSK_CAMELLIA_128_GCM_SHA256 | 0xC0 0x92 | TLS1.2
|
TLS_RSA_PSK_CAMELLIA_256_GCM_SHA384 | 0xC0 0x93 | TLS1.2
|
TLS_RSA_PSK_AES_128_GCM_SHA256 | 0x00 0xAC | TLS1.2
|
TLS_RSA_PSK_AES_128_CBC_SHA256 | 0x00 0xB6 | TLS1.0
|
TLS_RSA_PSK_NULL_SHA1 | 0x00 0x2E | TLS1.0
|
TLS_RSA_PSK_NULL_SHA256 | 0x00 0xB8 | TLS1.0
|
TLS_RSA_PSK_AES_256_GCM_SHA384 | 0x00 0xAD | TLS1.2
|
TLS_RSA_PSK_AES_256_CBC_SHA384 | 0x00 0xB7 | TLS1.0
|
TLS_RSA_PSK_NULL_SHA384 | 0x00 0xB9 | TLS1.0
|
TLS_RSA_PSK_CAMELLIA_128_CBC_SHA256 | 0xC0 0x98 | TLS1.0
|
TLS_RSA_PSK_CAMELLIA_256_CBC_SHA384 | 0xC0 0x99 | TLS1.0
|
TLS_DHE_PSK_ARCFOUR_128_SHA1 | 0x00 0x8E | SSL3.0
|
TLS_DHE_PSK_3DES_EDE_CBC_SHA1 | 0x00 0x8F | SSL3.0
|
TLS_DHE_PSK_AES_128_CBC_SHA1 | 0x00 0x90 | SSL3.0
|
TLS_DHE_PSK_AES_256_CBC_SHA1 | 0x00 0x91 | SSL3.0
|
TLS_DHE_PSK_AES_128_CBC_SHA256 | 0x00 0xB2 | TLS1.0
|
TLS_DHE_PSK_AES_128_GCM_SHA256 | 0x00 0xAA | TLS1.2
|
TLS_DHE_PSK_NULL_SHA1 | 0x00 0x2D | SSL3.0
|
TLS_DHE_PSK_NULL_SHA256 | 0x00 0xB4 | TLS1.0
|
TLS_DHE_PSK_NULL_SHA384 | 0x00 0xB5 | TLS1.0
|
TLS_DHE_PSK_AES_256_CBC_SHA384 | 0x00 0xB3 | TLS1.0
|
TLS_DHE_PSK_AES_256_GCM_SHA384 | 0x00 0xAB | TLS1.2
|
TLS_DHE_PSK_CAMELLIA_128_CBC_SHA256 | 0xC0 0x96 | TLS1.0
|
TLS_DHE_PSK_CAMELLIA_256_CBC_SHA384 | 0xC0 0x97 | TLS1.0
|
TLS_DHE_PSK_CAMELLIA_128_GCM_SHA256 | 0xC0 0x90 | TLS1.2
|
TLS_DHE_PSK_CAMELLIA_256_GCM_SHA384 | 0xC0 0x91 | TLS1.2
|
TLS_DH_ANON_ARCFOUR_128_MD5 | 0x00 0x18 | SSL3.0
|
TLS_DH_ANON_3DES_EDE_CBC_SHA1 | 0x00 0x1B | SSL3.0
|
TLS_DH_ANON_AES_128_CBC_SHA1 | 0x00 0x34 | SSL3.0
|
TLS_DH_ANON_AES_256_CBC_SHA1 | 0x00 0x3A | SSL3.0
|
TLS_DH_ANON_CAMELLIA_128_CBC_SHA256 | 0x00 0xBF | TLS1.0
|
TLS_DH_ANON_CAMELLIA_256_CBC_SHA256 | 0x00 0xC5 | TLS1.0
|
TLS_DH_ANON_CAMELLIA_128_CBC_SHA1 | 0x00 0x46 | SSL3.0
|
TLS_DH_ANON_CAMELLIA_256_CBC_SHA1 | 0x00 0x89 | SSL3.0
|
TLS_DH_ANON_AES_128_CBC_SHA256 | 0x00 0x6C | TLS1.0
|
TLS_DH_ANON_AES_256_CBC_SHA256 | 0x00 0x6D | TLS1.0
|
TLS_DH_ANON_AES_128_GCM_SHA256 | 0x00 0xA6 | TLS1.2
|
TLS_DH_ANON_AES_256_GCM_SHA384 | 0x00 0xA7 | TLS1.2
|
TLS_DH_ANON_CAMELLIA_128_GCM_SHA256 | 0xC0 0x84 | TLS1.2
|
TLS_DH_ANON_CAMELLIA_256_GCM_SHA384 | 0xC0 0x85 | TLS1.2
|
TLS_ECDH_ANON_NULL_SHA1 | 0xC0 0x15 | SSL3.0
|
TLS_ECDH_ANON_3DES_EDE_CBC_SHA1 | 0xC0 0x17 | SSL3.0
|
TLS_ECDH_ANON_AES_128_CBC_SHA1 | 0xC0 0x18 | SSL3.0
|
TLS_ECDH_ANON_AES_256_CBC_SHA1 | 0xC0 0x19 | SSL3.0
|
TLS_ECDH_ANON_ARCFOUR_128_SHA1 | 0xC0 0x16 | SSL3.0
|
TLS_SRP_SHA_3DES_EDE_CBC_SHA1 | 0xC0 0x1A | SSL3.0
|
TLS_SRP_SHA_AES_128_CBC_SHA1 | 0xC0 0x1D | SSL3.0
|
TLS_SRP_SHA_AES_256_CBC_SHA1 | 0xC0 0x20 | SSL3.0
|
TLS_SRP_SHA_DSS_3DES_EDE_CBC_SHA1 | 0xC0 0x1C | SSL3.0
|
TLS_SRP_SHA_RSA_3DES_EDE_CBC_SHA1 | 0xC0 0x1B | SSL3.0
|
TLS_SRP_SHA_DSS_AES_128_CBC_SHA1 | 0xC0 0x1F | SSL3.0
|
TLS_SRP_SHA_RSA_AES_128_CBC_SHA1 | 0xC0 0x1E | SSL3.0
|
TLS_SRP_SHA_DSS_AES_256_CBC_SHA1 | 0xC0 0x22 | SSL3.0
|
TLS_SRP_SHA_RSA_AES_256_CBC_SHA1 | 0xC0 0x21 | SSL3.0
|
X.509
OPENPGP
SSL3.0
TLS1.0
TLS1.1
TLS1.2
DTLS0.9
DTLS1.0
DTLS1.2
AES-256-CBC
AES-192-CBC
AES-128-CBC
AES-128-GCM
AES-256-GCM
ARCFOUR-128
ESTREAM-SALSA20-256
SALSA20-256
CAMELLIA-256-CBC
CAMELLIA-192-CBC
CAMELLIA-128-CBC
CAMELLIA-128-GCM
CAMELLIA-256-GCM
3DES-CBC
DES-CBC
ARCFOUR-40
RC2-40
NULL
SHA1
MD5
SHA256
SHA384
SHA512
SHA224
UMAC-96
UMAC-128
AEAD
ANON-DH
ANON-ECDH
RSA
DHE-RSA
DHE-DSS
ECDHE-RSA
ECDHE-ECDSA
SRP-DSS
SRP-RSA
SRP
PSK
RSA-PSK
DHE-PSK
ECDHE-PSK
RSA
DSA
EC
RSA-SHA1
RSA-SHA1
RSA-SHA224
RSA-SHA256
RSA-SHA384
RSA-SHA512
RSA-RMD160
DSA-SHA1
DSA-SHA1
DSA-SHA224
DSA-SHA256
RSA-MD5
RSA-MD5
RSA-MD2
ECDSA-SHA1
ECDSA-SHA224
ECDSA-SHA256
ECDSA-SHA384
ECDSA-SHA512
SECP192R1
SECP224R1
SECP256R1
SECP384R1
SECP521R1
DEFLATE
NULL
The prototypes for the following functions lie in gnutls/gnutls.h.
session: is a
gnutls_session_t
structure.This function will return the last alert number received. This function should be called when
GNUTLS_E_WARNING_ALERT_RECEIVED
orGNUTLS_E_FATAL_ALERT_RECEIVED
errors are returned by a gnutls function. The peer may send alerts if he encounters an error. If no alert has been received the returned value is undefined.Returns: the last alert received, a
gnutls_alert_description_t
value.
alert: is an alert number.
This function will return a string that describes the given alert number, or
NULL
. Seegnutls_alert_get()
.Returns: string corresponding to
gnutls_alert_description_t
value.
alert: is an alert number.
This function will return a string of the name of the alert.
Returns: string corresponding to
gnutls_alert_description_t
value.Since: 3.0
session: is a
gnutls_session_t
structure.level: is the level of the alert
desc: is the alert description
This function will send an alert to the peer in order to inform him of something important (eg. his Certificate could not be verified). If the alert level is Fatal then the peer is expected to close the connection, otherwise he may ignore the alert and continue.
The error code of the underlying record send function will be returned, so you may also receive
GNUTLS_E_INTERRUPTED
orGNUTLS_E_AGAIN
as well.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
session: is a
gnutls_session_t
structure.err: is an integer
Sends an alert to the peer depending on the error code returned by a gnutls function. This function will call
gnutls_error_to_alert()
to determine the appropriate alert to send.This function may also return
GNUTLS_E_AGAIN
, orGNUTLS_E_INTERRUPTED
.If the return value is
GNUTLS_E_INVALID_REQUEST
, then no alert has been sent to the peer.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
session: is a
gnutls_session_t
structure.protocol: will hold the protocol name
This function allows you to get the negotiated protocol name. The returned protocol should be treated as opaque, constant value and only valid during the session life.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.Since 3.1.11
session: is a
gnutls_session_t
structure.protocols: is the protocol names to add.
protocols_size: the number of protocols to add.
flags: zero or
GNUTLS_ALPN_
*This function is to be used by both clients and servers, to declare the supported ALPN protocols, which are used during peer negotiation.
If
GNUTLS_ALPN_MAND
is specified the connection will be aborted if no matching ALPN protocol is found.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.Since 3.1.11
sc: is a pointer to a
gnutls_anon_client_credentials_t
structure.This structure is complex enough to manipulate directly thus this helper function is provided in order to allocate it.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
sc: is a pointer to a
gnutls_anon_server_credentials_t
structure.This structure is complex enough to manipulate directly thus this helper function is provided in order to allocate it.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
sc: is a
gnutls_anon_client_credentials_t
structure.This structure is complex enough to manipulate directly thus this helper function is provided in order to free (deallocate) it.
sc: is a
gnutls_anon_server_credentials_t
structure.This structure is complex enough to manipulate directly thus this helper function is provided in order to free (deallocate) it.
res: is a gnutls_anon_server_credentials_t structure
func: is the function to be called
This function will set a callback in order for the server to get the Diffie-Hellman or RSA parameters for anonymous authentication. The callback should return
GNUTLS_E_SUCCESS
(0) on success.
res: is a gnutls_anon_server_credentials_t structure
dh_params: is a structure that holds Diffie-Hellman parameters.
This function will set the Diffie-Hellman parameters for an anonymous server to use. These parameters will be used in Anonymous Diffie-Hellman cipher suites.
res: is a gnutls_certificate_credentials_t structure
func: is the function to be called
This function will set a callback in order for the server to get the Diffie-Hellman parameters for anonymous authentication. The callback should return
GNUTLS_E_SUCCESS
(0) on success.
session: is a
gnutls_session_t
structure.Returns the type of credentials that were used for client authentication. The returned information is to be used to distinguish the function used to access authentication data.
Returns: The type of credentials for the client authentication schema, a
gnutls_credentials_type_t
type.
session: is a
gnutls_session_t
structure.Returns type of credentials for the current authentication schema. The returned information is to be used to distinguish the function used to access authentication data.
Eg. for CERTIFICATE ciphersuites (key exchange algorithms:
GNUTLS_KX_RSA
,GNUTLS_KX_DHE_RSA
), the same function are to be used to access the authentication data.Returns: The type of credentials for the current authentication schema, a
gnutls_credentials_type_t
type.
session: is a
gnutls_session_t
structure.Returns the type of credentials that were used for server authentication. The returned information is to be used to distinguish the function used to access authentication data.
Returns: The type of credentials for the server authentication schema, a
gnutls_credentials_type_t
type.
session: is a
gnutls_session_t
structure.how: is an integer
Terminates the current TLS/SSL connection. The connection should have been initiated using
gnutls_handshake()
.how
should be one ofGNUTLS_SHUT_RDWR
,GNUTLS_SHUT_WR
.In case of
GNUTLS_SHUT_RDWR
the TLS session gets terminated and further receives and sends will be disallowed. If the return value is zero you may continue using the underlying transport layer.GNUTLS_SHUT_RDWR
sends an alert containing a close request and waits for the peer to reply with the same message.In case of
GNUTLS_SHUT_WR
the TLS session gets terminated and further sends will be disallowed. In order to reuse the connection you should wait for an EOF from the peer.GNUTLS_SHUT_WR
sends an alert containing a close request.Note that not all implementations will properly terminate a TLS connection. Some of them, usually for performance reasons, will terminate only the underlying transport layer, and thus not distinguishing between a malicious party prematurely terminating the connection and normal termination.
This function may also return
GNUTLS_E_AGAIN
orGNUTLS_E_INTERRUPTED
; cf.gnutls_record_get_direction()
.Returns:
GNUTLS_E_SUCCESS
on success, or an error code, see function documentation for entire semantics.
session: is a gnutls session
This function will return the peer's certificate activation time. This is the creation time for openpgp keys.
Returns: (time_t)-1 on error.
Deprecated:
gnutls_certificate_verify_peers2()
now verifies activation times.
res: is a pointer to a
gnutls_certificate_credentials_t
structure.This structure is complex enough to manipulate directly thus this helper function is provided in order to allocate it.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
session: is a gnutls session
Get whether client certificate is requested or not.
Returns: 0 if the peer (server) did not request client authentication or 1 otherwise.
session: is a gnutls session
This function will return the peer's certificate expiration time.
Returns: (time_t)-1 on error.
Deprecated:
gnutls_certificate_verify_peers2()
now verifies expiration times.
sc: is a
gnutls_certificate_credentials_t
structure.This function will delete all the CA name in the given credentials. Clients may call this to save some memory since in client side the CA names are not used. Servers might want to use this function if a large list of trusted CAs is present and sending the names of it would just consume bandwidth without providing information to client.
CA names are used by servers to advertise the CAs they support to clients.
sc: is a
gnutls_certificate_credentials_t
structure.This function will delete all the CAs associated with the given credentials. Servers that do not use
gnutls_certificate_verify_peers2()
may call this to save some memory.
sc: is a
gnutls_certificate_credentials_t
structure.This structure is complex enough to manipulate directly thus this helper function is provided in order to free (deallocate) it.
This function does not free any temporary parameters associated with this structure (ie RSA and DH parameters are not freed by this function).
sc: is a
gnutls_certificate_credentials_t
structure.This function will delete all the CRLs associated with the given credentials.
sc: is a
gnutls_certificate_credentials_t
structure.This function will delete all the keys and the certificates associated with the given credentials. This function must not be called when a TLS negotiation that uses the credentials is in progress.
sc: is a
gnutls_certificate_credentials_t
structure.idx1: the index of the certificate if multiple are present
idx2: the index in the certificate list. Zero gives the server's certificate.
cert: Will hold the DER encoded certificate.
This function will return the DER encoded certificate of the server or any other certificate on its certificate chain (based on
idx2
). The returned data should be treated as constant and only accessible during the lifetime ofsc
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value. In case the indexes are out of boundsGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.Since: 3.2.5
sc: is a
gnutls_certificate_credentials_t
structure.cert: is the certificate to find issuer for
issuer: Will hold the issuer if any. Should be treated as constant.
flags: Use zero.
This function will return the issuer of a given certificate.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
session: is a gnutls session
Gets the certificate as sent to the peer in the last handshake. The certificate is in raw (DER) format. No certificate list is being returned. Only the first certificate.
Returns: a pointer to a
gnutls_datum_t
containing our certificate, orNULL
in case of an error or if no certificate was used.
session: is a gnutls session
list_size: is the length of the certificate list (may be
NULL
)Get the peer's raw certificate (chain) as sent by the peer. These certificates are in raw format (DER encoded for X.509). In case of a X.509 then a certificate list may be present. The first certificate in the list is the peer's certificate, following the issuer's certificate, then the issuer's issuer etc.
In case of OpenPGP keys a single key will be returned in raw format.
Returns: a pointer to a
gnutls_datum_t
containing our certificates, orNULL
in case of an error or if no certificate was used.
session: is a gnutls session
id: will contain the ID
Get the peer's subkey ID when OpenPGP certificates are used. The returned
id
should be treated as constant.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.Since: 3.1.3
session: is a pointer to a
gnutls_session_t
structure.status: is 0 or 1
If status is non zero, this function will order gnutls not to send the rdnSequence in the certificate request message. That is the server will not advertise its trusted CAs to the peer. If status is zero then the default behaviour will take effect, which is to advertise the server's trusted CAs.
This function has no effect in clients, and in authentication methods other than certificate with X.509 certificates.
session: is a
gnutls_session_t
structure.req: is one of GNUTLS_CERT_REQUEST, GNUTLS_CERT_REQUIRE
This function specifies if we (in case of a server) are going to send a certificate request message to the client. If
req
is GNUTLS_CERT_REQUIRE then the server will return an error if the peer does not provide a certificate. If you do not call this function then the client will not be asked to send a certificate.
res: is a gnutls_certificate_credentials_t structure
dh_params: is a structure that holds Diffie-Hellman parameters.
This function will set the Diffie-Hellman parameters for a certificate server to use. These parameters will be used in Ephemeral Diffie-Hellman cipher suites. Note that only a pointer to the parameters are stored in the certificate handle, so you must not deallocate the parameters before the certificate is deallocated.
sc: is a credentials structure.
response_file: a filename of the OCSP response
flags: should be zero
This function sets the filename of an OCSP response, that will be sent to the client if requests an OCSP certificate status. This is a convenience function which is inefficient on busy servers since the file is opened on every access. Use
gnutls_certificate_set_ocsp_status_request_function()
to fine-tune file accesses.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.Since: 3.1.3
sc: is a
gnutls_certificate_credentials_t
structure.ocsp_func: function pointer to OCSP status request callback.
ptr: opaque pointer passed to callback function
This function is to be used by server to register a callback to handle OCSP status requests from the client. The callback will be invoked if the client supplied a status-request OCSP extension. The callback function prototype is:
typedef int (*gnutls_status_request_ocsp_func) (gnutls_session_t session, void *ptr, gnutls_datum_t *ocsp_response);
The callback will be invoked if the client requests an OCSP certificate status. The callback may return
GNUTLS_E_NO_CERTIFICATE_STATUS
, if there is no recent OCSP response. If the callback returnsGNUTLS_E_SUCCESS
, the server will provide the client with the ocsp_response.The response must be a value allocated using
gnutls_malloc()
, and will be deinitialized when needed.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.Since: 3.1.3
res: is a gnutls_certificate_credentials_t structure
func: is the function to be called
This function will set a callback in order for the server to get the Diffie-Hellman or RSA parameters for certificate authentication. The callback should return
GNUTLS_E_SUCCESS
(0) on success.
cred: is a
gnutls_certificate_credentials_t
structure.fn: A PIN callback
userdata: Data to be passed in the callback
This function will set a callback function to be used when required to access a protected object. This function overrides any other global PIN functions.
Note that this function must be called right after initialization to have effect.
Since: 3.1.0
cred: is a
gnutls_certificate_credentials_t
structure.func: is the callback function
This function sets a callback to be called in order to retrieve the certificate to be used in the handshake. You are advised to use
gnutls_certificate_set_retrieve_function2()
because it is much more efficient in the processing it requires from gnutls.The callback's function prototype is: int (*callback)(gnutls_session_t, const gnutls_datum_t* req_ca_dn, int nreqs, const gnutls_pk_algorithm_t* pk_algos, int pk_algos_length, gnutls_retr2_st* st);
req_ca_cert
is only used in X.509 certificates. Contains a list with the CA names that the server considers trusted. Normally we should send a certificate that is signed by one of these CAs. These names are DER encoded. To get a more meaningful value use the functiongnutls_x509_rdn_get()
.
pk_algos
contains a list with server's acceptable signature algorithms. The certificate returned should support the server's given algorithms.
st
should contain the certificates and private keys.If the callback function is provided then gnutls will call it, in the handshake, after the certificate request message has been received.
In server side pk_algos and req_ca_dn are NULL.
The callback function should set the certificate list to be sent, and return 0 on success. If no certificate was selected then the number of certificates should be set to zero. The value (-1) indicates error and the handshake will be terminated.
Since: 3.0
res: is a gnutls_certificate_credentials_t structure
flags: are the flags
This function will set the flags to be used for verification of certificates and override any defaults. The provided flags must be an OR of the
gnutls_certificate_verify_flags
enumerations.
cred: is a
gnutls_certificate_credentials_t
structure.func: is the callback function
This function sets a callback to be called when peer's certificate has been received in order to verify it on receipt rather than doing after the handshake is completed.
The callback's function prototype is: int (*callback)(gnutls_session_t);
If the callback function is provided then gnutls will call it, in the handshake, just after the certificate message has been received. To verify or obtain the certificate the
gnutls_certificate_verify_peers2()
,gnutls_certificate_type_get()
,gnutls_certificate_get_peers()
functions can be used.The callback function should return 0 for the handshake to continue or non-zero to terminate.
Since: 2.10.0
res: is a gnutls_certificate_credentials structure
max_bits: is the number of bits of an acceptable certificate (default 8200)
max_depth: is maximum depth of the verification of a certificate chain (default 5)
This function will set some upper limits for the default verification function,
gnutls_certificate_verify_peers2()
, to avoid denial of service attacks. You can set them to zero to disable limits.
res: is a
gnutls_certificate_credentials_t
structure.crl_list: is a list of trusted CRLs. They should have been verified before.
crl_list_size: holds the size of the crl_list
This function adds the trusted CRLs in order to verify client or server certificates. In case of a client this is not required to be called if the certificates are not verified using
gnutls_certificate_verify_peers2()
. This function may be called multiple times.Returns: number of CRLs processed, or a negative error code on error.
Since: 2.4.0
res: is a
gnutls_certificate_credentials_t
structure.crlfile: is a file containing the list of verified CRLs (DER or PEM list)
type: is PEM or DER
This function adds the trusted CRLs in order to verify client or server certificates. In case of a client this is not required to be called if the certificates are not verified using
gnutls_certificate_verify_peers2()
. This function may be called multiple times.Returns: number of CRLs processed or a negative error code on error.
res: is a
gnutls_certificate_credentials_t
structure.CRL: is a list of trusted CRLs. They should have been verified before.
type: is DER or PEM
This function adds the trusted CRLs in order to verify client or server certificates. In case of a client this is not required to be called if the certificates are not verified using
gnutls_certificate_verify_peers2()
. This function may be called multiple times.Returns: number of CRLs processed, or a negative error code on error.
res: is a
gnutls_certificate_credentials_t
structure.cert_list: contains a certificate list (path) for the specified private key
cert_list_size: holds the size of the certificate list
key: is a
gnutls_x509_privkey_t
keyThis function sets a certificate/private key pair in the gnutls_certificate_credentials_t structure. This function may be called more than once, in case multiple keys/certificates exist for the server. For clients that wants to send more than their own end entity certificate (e.g., also an intermediate CA cert) then put the certificate chain in
cert_list
.Note that the certificates and keys provided, can be safely deinitialized after this function is called.
Returns:
GNUTLS_E_SUCCESS
(0) on success, or a negative error code.Since: 2.4.0
res: is a
gnutls_certificate_credentials_t
structure.certfile: is a file that containing the certificate list (path) for the specified private key, in PKCS7 format, or a list of certificates
keyfile: is a file that contains the private key
type: is PEM or DER
This function sets a certificate/private key pair in the gnutls_certificate_credentials_t structure. This function may be called more than once, in case multiple keys/certificates exist for the server. For clients that need to send more than its own end entity certificate, e.g., also an intermediate CA cert, then the
certfile
must contain the ordered certificate chain.Note that the names in the certificate provided will be considered when selecting the appropriate certificate to use (in case of multiple certificate/key pairs).
This function can also accept URLs at
keyfile
andcertfile
. In that case it will import the private key and certificate indicated by the URLs. Note that the supported URLs are the ones indicated bygnutls_url_is_supported()
.In case the
certfile
is provided as a PKCS11
URL, then the certificate, and its present issuers in the token are are imported (i.e., the required trust chain).Returns:
GNUTLS_E_SUCCESS
(0) on success, or a negative error code.
res: is a
gnutls_certificate_credentials_t
structure.certfile: is a file that containing the certificate list (path) for the specified private key, in PKCS7 format, or a list of certificates
keyfile: is a file that contains the private key
type: is PEM or DER
pass: is the password of the key
flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t
This function sets a certificate/private key pair in the gnutls_certificate_credentials_t structure. This function may be called more than once, in case multiple keys/certificates exist for the server. For clients that need to send more than its own end entity certificate, e.g., also an intermediate CA cert, then the
certfile
must contain the ordered certificate chain.Note that the names in the certificate provided will be considered when selecting the appropriate certificate to use (in case of multiple certificate/key pairs).
This function can also accept URLs at
keyfile
andcertfile
. In that case it will import the private key and certificate indicated by the URLs. Note that the supported URLs are the ones indicated bygnutls_url_is_supported()
.In case the
certfile
is provided as a PKCS11
URL, then the certificate, and its present issuers in the token are are imported (i.e., the required trust chain).Returns:
GNUTLS_E_SUCCESS
(0) on success, or a negative error code.
res: is a
gnutls_certificate_credentials_t
structure.cert: contains a certificate list (path) for the specified private key
key: is the private key, or
NULL
type: is PEM or DER
This function sets a certificate/private key pair in the gnutls_certificate_credentials_t structure. This function may be called more than once, in case multiple keys/certificates exist for the server.
Note that the keyUsage (2.5.29.15) PKIX extension in X.509 certificates is supported. This means that certificates intended for signing cannot be used for ciphersuites that require encryption.
If the certificate and the private key are given in PEM encoding then the strings that hold their values must be null terminated.
The
key
may beNULL
if you are using a sign callback, seegnutls_sign_callback_set()
.Returns:
GNUTLS_E_SUCCESS
(0) on success, or a negative error code.
res: is a
gnutls_certificate_credentials_t
structure.cert: contains a certificate list (path) for the specified private key
key: is the private key, or
NULL
type: is PEM or DER
pass: is the key's password
flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t
This function sets a certificate/private key pair in the gnutls_certificate_credentials_t structure. This function may be called more than once, in case multiple keys/certificates exist for the server.
Note that the keyUsage (2.5.29.15) PKIX extension in X.509 certificates is supported. This means that certificates intended for signing cannot be used for ciphersuites that require encryption.
If the certificate and the private key are given in PEM encoding then the strings that hold their values must be null terminated.
The
key
may beNULL
if you are using a sign callback, seegnutls_sign_callback_set()
.Returns:
GNUTLS_E_SUCCESS
(0) on success, or a negative error code.
res: is a
gnutls_certificate_credentials_t
structure.pkcs12file: filename of file containing PKCS
12
blob.type: is PEM or DER of the
pkcs12file
.password: optional password used to decrypt PKCS
12
file, bags and keys.This function sets a certificate/private key pair and/or a CRL in the gnutls_certificate_credentials_t structure. This function may be called more than once (in case multiple keys/certificates exist for the server).
PKCS
12
files with a MAC, encrypted bags and PKCS8
private keys are supported. However, only password based security, and the same password for all operations, are supported.PKCS
12
file may contain many keys and/or certificates, and this function will try to auto-detect based on the key ID the certificate and key pair to use. If the PKCS12
file contain the issuer of the selected certificate, it will be appended to the certificate to form a chain.If more than one private keys are stored in the PKCS
12
file, then only one key will be read (and it is undefined which one).It is believed that the limitations of this function is acceptable for most usage, and that any more flexibility would introduce complexity that would make it harder to use this functionality at all.
Returns:
GNUTLS_E_SUCCESS
(0) on success, or a negative error code.
res: is a
gnutls_certificate_credentials_t
structure.p12blob: the PKCS
12
blob.type: is PEM or DER of the
pkcs12file
.password: optional password used to decrypt PKCS
12
file, bags and keys.This function sets a certificate/private key pair and/or a CRL in the gnutls_certificate_credentials_t structure. This function may be called more than once (in case multiple keys/certificates exist for the server).
Encrypted PKCS
12
bags and PKCS8
private keys are supported. However, only password based security, and the same password for all operations, are supported.PKCS
12
file may contain many keys and/or certificates, and this function will try to auto-detect based on the key ID the certificate and key pair to use. If the PKCS12
file contain the issuer of the selected certificate, it will be appended to the certificate to form a chain.If more than one private keys are stored in the PKCS
12
file, then only one key will be read (and it is undefined which one).It is believed that the limitations of this function is acceptable for most usage, and that any more flexibility would introduce complexity that would make it harder to use this functionality at all.
Returns:
GNUTLS_E_SUCCESS
(0) on success, or a negative error code.Since: 2.8.0
cred: is a
gnutls_certificate_credentials_t
structure.This function adds the system's default trusted CAs in order to verify client or server certificates.
In the case the system is currently unsupported
GNUTLS_E_UNIMPLEMENTED_FEATURE
is returned.Returns: the number of certificates processed or a negative error code on error.
Since: 3.0.20
res: is a
gnutls_certificate_credentials_t
structure.ca_list: is a list of trusted CAs
ca_list_size: holds the size of the CA list
This function adds the trusted CAs in order to verify client or server certificates. In case of a client this is not required to be called if the certificates are not verified using
gnutls_certificate_verify_peers2()
. This function may be called multiple times.In case of a server the CAs set here will be sent to the client if a certificate request is sent. This can be disabled using
gnutls_certificate_send_x509_rdn_sequence()
.Returns: the number of certificates processed or a negative error code on error.
Since: 2.4.0
cred: is a
gnutls_certificate_credentials_t
structure.ca_dir: is a directory containing the list of trusted CAs (DER or PEM list)
type: is PEM or DER
This function adds the trusted CAs present in the directory in order to verify client or server certificates. This function is identical to
gnutls_certificate_set_x509_trust_file()
but loads all certificates in a directory.Returns: the number of certificates processed
Since: 3.3.6
cred: is a
gnutls_certificate_credentials_t
structure.cafile: is a file containing the list of trusted CAs (DER or PEM list)
type: is PEM or DER
This function adds the trusted CAs in order to verify client or server certificates. In case of a client this is not required to be called if the certificates are not verified using
gnutls_certificate_verify_peers2()
. This function may be called multiple times.In case of a server the names of the CAs set here will be sent to the client if a certificate request is sent. This can be disabled using
gnutls_certificate_send_x509_rdn_sequence()
.This function can also accept URLs. In that case it will import all certificates that are marked as trusted. Note that the supported URLs are the ones indicated by
gnutls_url_is_supported()
.Returns: the number of certificates processed
res: is a
gnutls_certificate_credentials_t
structure.ca: is a list of trusted CAs or a DER certificate
type: is DER or PEM
This function adds the trusted CAs in order to verify client or server certificates. In case of a client this is not required to be called if the certificates are not verified using
gnutls_certificate_verify_peers2()
. This function may be called multiple times.In case of a server the CAs set here will be sent to the client if a certificate request is sent. This can be disabled using
gnutls_certificate_send_x509_rdn_sequence()
.Returns: the number of certificates processed or a negative error code on error.
session: is a
gnutls_session_t
structure.The certificate type is by default X.509, unless it is negotiated as a TLS extension.
Returns: the currently used
gnutls_certificate_type_t
certificate type.
name: is a certificate type name
The names are compared in a case insensitive way.
Returns: a
gnutls_certificate_type_t
for the specified in a string certificate type, orGNUTLS_CRT_UNKNOWN
on error.
type: is a certificate type
Convert a
gnutls_certificate_type_t
type to a string.Returns: a string that contains the name of the specified certificate type, or
NULL
in case of unknown types.
Get a list of certificate types.
Returns: a (0)-terminated list of
gnutls_certificate_type_t
integers indicating the available certificate types.
status: The status flags to be printed
type: The certificate type
out: Newly allocated datum with (0) terminated string.
flags: should be zero
This function will pretty print the status of a verification process – eg. the one obtained by
gnutls_certificate_verify_peers3()
.The output
out
needs to be deallocated usinggnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.4
session: is a gnutls session
data: an array of typed data
elements: the number of data elements
status: is the output of the verification
This function will verify the peer's certificate and store the status in the
status
variable as a bitwise or'd gnutls_certificate_status_t values or zero if the certificate is trusted. Note that value instatus
is set only when the return value of this function is success (i.e, failure to trust a certificate does not imply a negative return value). The default verification flags used by this function can be overridden usinggnutls_certificate_set_verify_flags()
. See the documentation ofgnutls_certificate_verify_peers2()
for details in the verification process.The acceptable data types are
GNUTLS_DT_DNS_HOSTNAME
andGNUTLS_DT_KEY_PURPOSE_OID
. If a DNS hostname is provided then this function will compare the hostname in the certificate against the given. The comparison will be accurate for ascii names; non-ascii names are compared byte-by-byte. If names do not match theGNUTLS_CERT_UNEXPECTED_OWNER
status flag will be set.If a key purpose OID is provided and the end-certificate contains the extended key usage PKIX extension, it will be required to be have the provided key purpose (e.g.,
GNUTLS_KP_TLS_WWW_SERVER
), or be marked for any purpose, otherwise verification will fail withGNUTLS_CERT_SIGNER_CONSTRAINTS_FAILURE
status.Returns: a negative error code on error and
GNUTLS_E_SUCCESS
(0) on success.Since: 3.3.0
session: is a gnutls session
status: is the output of the verification
This function will verify the peer's certificate and store the status in the
status
variable as a bitwise or'd gnutls_certificate_status_t values or zero if the certificate is trusted. Note that value instatus
is set only when the return value of this function is success (i.e, failure to trust a certificate does not imply a negative return value). The default verification flags used by this function can be overridden usinggnutls_certificate_set_verify_flags()
.This function will take into account the OCSP Certificate Status TLS extension, as well as the following X.509 certificate extensions: Name Constraints, Key Usage, and Basic Constraints (pathlen).
To avoid denial of service attacks some default upper limits regarding the certificate key size and chain size are set. To override them use
gnutls_certificate_set_verify_limits()
.Note that you must also check the peer's name in order to check if the verified certificate belongs to the actual peer, see
gnutls_x509_crt_check_hostname()
, or usegnutls_certificate_verify_peers3()
.Returns: a negative error code on error and
GNUTLS_E_SUCCESS
(0) on success.
session: is a gnutls session
hostname: is the expected name of the peer; may be
NULL
status: is the output of the verification
This function will verify the peer's certificate and store the status in the
status
variable as a bitwise or'd gnutls_certificate_status_t values or zero if the certificate is trusted. Note that value instatus
is set only when the return value of this function is success (i.e, failure to trust a certificate does not imply a negative return value). The default verification flags used by this function can be overridden usinggnutls_certificate_set_verify_flags()
. See the documentation ofgnutls_certificate_verify_peers2()
for details in the verification process.If the
hostname
provided is non-NULL then this function will compare the hostname in the certificate against the given. The comparison will be accurate for ascii names; non-ascii names are compared byte-by-byte. If names do not match theGNUTLS_CERT_UNEXPECTED_OWNER
status flag will be set.In order to verify the purpose of the end-certificate (by checking the extended key usage), use
gnutls_certificate_verify_peers()
.Returns: a negative error code on error and
GNUTLS_E_SUCCESS
(0) on success.Since: 3.1.4
req_version: version string to compare with, or
NULL
.Check GnuTLS Library version.
See
GNUTLS_VERSION
for a suitablereq_version
string.Returns: Check that the version of the library is at minimum the one given as a string in
req_version
and return the actual version string of the library; returnNULL
if the condition is not met. IfNULL
is passed to this function no check is done and only the version string is returned.
session: is a
gnutls_session_t
structure.Get currently used cipher.
Returns: the currently used cipher, a
gnutls_cipher_algorithm_t
type.
name: is a cipher algorithm name
The names are compared in a case insensitive way.
Returns: return a
gnutls_cipher_algorithm_t
value corresponding to the specified cipher, orGNUTLS_CIPHER_UNKNOWN
on error.
algorithm: is an encryption algorithm
Get key size for cipher.
Returns: length (in bytes) of the given cipher's key size, or 0 if the given cipher is invalid.
algorithm: is an encryption algorithm
Convert a
gnutls_cipher_algorithm_t
type to a string.Returns: a pointer to a string that contains the name of the specified cipher, or
NULL
.
Get a list of supported cipher algorithms. Note that not necessarily all ciphers are supported as TLS cipher suites. For example, DES is not supported as a cipher suite, but is supported for other purposes (e.g., PKCS
8
or similar).This function is not thread safe.
Returns: a (0)-terminated list of
gnutls_cipher_algorithm_t
integers indicating the available ciphers.
kx_algorithm: is a Key exchange algorithm
cipher_algorithm: is a cipher algorithm
mac_algorithm: is a MAC algorithm
Note that the full cipher suite name must be prepended by TLS or SSL depending of the protocol in use.
Returns: a string that contains the name of a TLS cipher suite, specified by the given algorithms, or
NULL
.
idx: index of cipher suite to get information about, starts on 0.
cs_id: output buffer with room for 2 bytes, indicating cipher suite value
kx: output variable indicating key exchange algorithm, or
NULL
.cipher: output variable indicating cipher, or
NULL
.mac: output variable indicating MAC algorithm, or
NULL
.min_version: output variable indicating TLS protocol version, or
NULL
.Get information about supported cipher suites. Use the function iteratively to get information about all supported cipher suites. Call with idx=0 to get information about first cipher suite, then idx=1 and so on until the function returns NULL.
Returns: the name of
idx
cipher suite, and set the information about the cipher suite in the output variables. Ifidx
is out of bounds,NULL
is returned.
session: is a
gnutls_session_t
structure.Get currently used compression algorithm.
Returns: the currently used compression method, a
gnutls_compression_method_t
value.
name: is a compression method name
The names are compared in a case insensitive way.
Returns: an id of the specified in a string compression method, or
GNUTLS_COMP_UNKNOWN
on error.
algorithm: is a Compression algorithm
Convert a
gnutls_compression_method_t
value to a string.Returns: a pointer to a string that contains the name of the specified compression algorithm, or
NULL
.
Get a list of compression methods.
Returns: a zero-terminated list of
gnutls_compression_method_t
integers indicating the available compression methods.
session: is a
gnutls_session_t
structure.Clears all the credentials previously set in this session.
session: is a
gnutls_session_t
structure.type: is the type of the credentials to return
cred: will contain the pointer to the credentials structure.
Returns the previously provided credentials structures.
For
GNUTLS_CRD_ANON
,cred
will begnutls_anon_client_credentials_t
in case of a client. In case of a server it should begnutls_anon_server_credentials_t
.For
GNUTLS_CRD_SRP
,cred
will begnutls_srp_client_credentials_t
in case of a client, andgnutls_srp_server_credentials_t
, in case of a server.For
GNUTLS_CRD_CERTIFICATE
,cred
will begnutls_certificate_credentials_t
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
session: is a
gnutls_session_t
structure.type: is the type of the credentials
cred: is a pointer to a structure.
Sets the needed credentials for the specified type. Eg username, password - or public and private keys etc. The
cred
parameter is a structure that depends on the specified type and on the current session (client or server).In order to minimize memory usage, and share credentials between several threads gnutls keeps a pointer to cred, and not the whole cred structure. Thus you will have to keep the structure allocated until you call
gnutls_deinit()
.For
GNUTLS_CRD_ANON
,cred
should begnutls_anon_client_credentials_t
in case of a client. In case of a server it should begnutls_anon_server_credentials_t
.For
GNUTLS_CRD_SRP
,cred
should begnutls_srp_client_credentials_t
in case of a client, andgnutls_srp_server_credentials_t
, in case of a server.For
GNUTLS_CRD_CERTIFICATE
,cred
should begnutls_certificate_credentials_t
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
session: is a
gnutls_session_t
structure.session_entry: is the session data (not key)
This function has no effect.
Returns: Returns
GNUTLS_E_EXPIRED
, if the database entry has expired or 0 otherwise.
entry: is a pointer to a
gnutls_datum_t
structure.This function returns the time that this entry was active. It can be used for database entry expiration.
Returns: The time this entry was created, or zero on error.
Returns the expiration time (in seconds) of stored sessions for resumption.
session: is a
gnutls_session_t
structure.Get db function pointer.
Returns: the pointer that will be sent to db store, retrieve and delete functions, as the first argument.
session: is a
gnutls_session_t
structure.This function will remove the current session data from the session database. This will prevent future handshakes reusing these session data. This function should be called if a session was terminated abnormally, and before
gnutls_deinit()
is called.Normally
gnutls_deinit()
will remove abnormally terminated sessions.
session: is a
gnutls_session_t
structure.seconds: is the number of seconds.
Set the expiration time for resumed sessions. The default is 3600 (one hour) at the time of this writing.
session: is a
gnutls_session_t
structure.ptr: is the pointer
Sets the pointer that will be provided to db store, retrieve and delete functions, as the first argument.
session: is a
gnutls_session_t
structure.rem_func: is the function.
Sets the function that will be used to remove data from the resumed sessions database. This function must return 0 on success.
The first argument to
rem_func
will be null unlessgnutls_db_set_ptr()
has been called.
session: is a
gnutls_session_t
structure.retr_func: is the function.
Sets the function that will be used to retrieve data from the resumed sessions database. This function must return a gnutls_datum_t containing the data on success, or a gnutls_datum_t containing null and 0 on failure.
The datum's data must be allocated using the function
gnutls_malloc()
.The first argument to
retr_func
will be null unlessgnutls_db_set_ptr()
has been called.
session: is a
gnutls_session_t
structure.store_func: is the function
Sets the function that will be used to store data in the resumed sessions database. This function must return 0 on success.
The first argument to
store_func
will be null unlessgnutls_db_set_ptr()
has been called.
session: is a
gnutls_session_t
structure.This function clears all buffers associated with the
session
. This function will also remove session data from the session database if the session was terminated abnormally.
session: is a gnutls session
raw_gen: will hold the generator.
raw_prime: will hold the prime.
This function will return the group parameters used in the last Diffie-Hellman key exchange with the peer. These are the prime and the generator used. This function should be used for both anonymous and ephemeral Diffie-Hellman. The output parameters must be freed with
gnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
session: is a gnutls session
Get the Diffie-Hellman public key bit size. Can be used for both anonymous and ephemeral Diffie-Hellman.
Returns: The public key bit size used in the last Diffie-Hellman key exchange with the peer, or a negative error code in case of error.
session: is a gnutls session
This function will return the bits of the prime used in the last Diffie-Hellman key exchange with the peer. Should be used for both anonymous and ephemeral Diffie-Hellman. Note that some ciphers, like RSA and DSA without DHE, do not use a Diffie-Hellman key exchange, and then this function will return 0.
Returns: The Diffie-Hellman bit strength is returned, or 0 if no Diffie-Hellman key exchange was done, or a negative error code on failure.
session: is a gnutls session
raw_key: will hold the public key.
This function will return the peer's public key used in the last Diffie-Hellman key exchange. This function should be used for both anonymous and ephemeral Diffie-Hellman. The output parameters must be freed with
gnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
session: is a gnutls session
This function will return the bits used in the last Diffie-Hellman key exchange with the peer. Should be used for both anonymous and ephemeral Diffie-Hellman.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
dst: Is the destination structure, which should be initialized.
src: Is the source structure
This function will copy the DH parameters structure from source to destination.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
dh_params: Is a structure that holds the prime numbers
This function will deinitialize the DH parameters structure.
params: Holds the DH parameters
format: the format of output params. One of PEM or DER.
out: will contain a PKCS3 DHParams structure PEM or DER encoded
This function will export the given dh parameters to a PKCS3 DHParams structure. This is the format generated by "openssl dhparam" tool. The data in
out
will be allocated usinggnutls_malloc()
.If the structure is PEM encoded, it will have a header of "BEGIN DH PARAMETERS".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.Since: 3.1.3
params: Holds the DH parameters
format: the format of output params. One of PEM or DER.
params_data: will contain a PKCS3 DHParams structure PEM or DER encoded
params_data_size: holds the size of params_data (and will be replaced by the actual size of parameters)
This function will export the given dh parameters to a PKCS3 DHParams structure. This is the format generated by "openssl dhparam" tool. If the buffer provided is not long enough to hold the output, then GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.
If the structure is PEM encoded, it will have a header of "BEGIN DH PARAMETERS".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
params: Holds the DH parameters
prime: will hold the new prime
generator: will hold the new generator
bits: if non null will hold the secret key's number of bits
This function will export the pair of prime and generator for use in the Diffie-Hellman key exchange. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
dparams: Is the structure that the DH parameters will be stored
bits: is the prime's number of bits
This function will generate a new pair of prime and generator for use in the Diffie-Hellman key exchange. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum. This function is normally slow.Do not set the number of bits directly, use
gnutls_sec_param_to_pk_bits()
to get bits forGNUTLS_PK_DSA
. Also note that the DH parameters are only useful to servers. Since clients use the parameters sent by the server, it's of no use to call this in client side.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
params: A structure where the parameters will be copied to
pkcs3_params: should contain a PKCS3 DHParams structure PEM or DER encoded
format: the format of params. PEM or DER.
This function will extract the DHParams found in a PKCS3 formatted structure. This is the format generated by "openssl dhparam" tool.
If the structure is PEM encoded, it should have a header of "BEGIN DH PARAMETERS".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
dh_params: Is a structure that will hold the prime numbers
prime: holds the new prime
generator: holds the new generator
This function will replace the pair of prime and generator for use in the Diffie-Hellman key exchange. The new parameters should be stored in the appropriate gnutls_datum.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
dh_params: Is a structure that will hold the prime numbers
This function will initialize the DH parameters structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
session: is a
gnutls_session_t
structure.bits: is the number of bits
This function sets the number of bits, for use in a Diffie-Hellman key exchange. This is used both in DH ephemeral and DH anonymous cipher suites. This will set the minimum size of the prime that will be used for the handshake.
In the client side it sets the minimum accepted number of bits. If a server sends a prime with less bits than that
GNUTLS_E_DH_PRIME_UNACCEPTABLE
will be returned by the handshake.Note that values lower than 512 bits may allow decryption of the exchanged data.
The function has no effect in server side.
Note that since 3.1.7 this function is deprecated. The minimum number of bits is set by the priority string level. Also this function must be called after
gnutls_priority_set_direct()
or the set value may be overridden by the selected priority options.
name: is a digest algorithm name
Convert a string to a
gnutls_digest_algorithm_t
value. The names are compared in a case insensitive way.Returns: a
gnutls_digest_algorithm_t
id of the specified MAC algorithm string, orGNUTLS_DIG_UNKNOWN
on failures.
algorithm: is a digest algorithm
Convert a
gnutls_digest_algorithm_t
value to a string.Returns: a string that contains the name of the specified digest algorithm, or
NULL
.
Get a list of hash (digest) algorithms supported by GnuTLS.
This function is not thread safe.
Returns: Return a (0)-terminated list of
gnutls_digest_algorithm_t
integers indicating the available digests.
session: is a
gnutls_session_t
structure.Returns the currently used elliptic curve. Only valid when using an elliptic curve ciphersuite.
Returns: the currently used curve, a
gnutls_ecc_curve_t
type.Since: 3.0
curve: is an ECC curve
Convert a
gnutls_ecc_curve_t
value to a string.Returns: a string that contains the name of the specified curve or
NULL
.Since: 3.0
curve: is an ECC curve
Returns the size in bytes of the curve.
Returns: a the size or (0).
Since: 3.0
Get the list of supported elliptic curves.
This function is not thread safe.
Returns: Return a (0)-terminated list of
gnutls_ecc_curve_t
integers indicating the available curves.
error: is a GnuTLS error code, a negative error code
If a GnuTLS function returns a negative error code you may feed that value to this function to see if the error condition is fatal to a TLS session (i.e., must be terminated).
Note that you may also want to check the error code manually, since some non-fatal errors to the protocol (such as a warning alert or a rehandshake request) may be fatal for your program.
This function is only useful if you are dealing with errors from functions that relate to a TLS session (e.g., record layer or handshake layer handling functions).
Returns: zero on non fatal errors or positive
error
values. Non-zero on fatal error codes.
err: is a negative integer
level: the alert level will be stored there
Get an alert depending on the error code returned by a gnutls function. All alerts sent by this function should be considered fatal. The only exception is when
err
isGNUTLS_E_REHANDSHAKE
, where a warning alert should be sent to the peer indicating that no renegotiation will be performed.If there is no mapping to a valid alert the alert to indicate internal error is returned.
Returns: the alert code to use for a particular error code.
version: is a
gnutls_protocol_t
valuecipher: is a
gnutls_cipher_algorithm_t
valuemac: is a
gnutls_mac_algorithm_t
valuecomp: is a
gnutls_compression_method_t
valueflags: must be zero
This function will return the set size in bytes of the overhead due to TLS (or DTLS) per record.
Note that this function may provide inacurate values when TLS extensions that modify the record format are negotiated. In these cases a more accurate value can be obtained using
gnutls_record_overhead_size()
after a completed handshake.Since: 3.2.2
algo: is a digest algorithm
data: is the data
result: is the place where the result will be copied (may be null).
result_size: should hold the size of the result. The actual size of the returned result will also be copied there.
This function will calculate a fingerprint (actually a hash), of the given data. The result is not printable data. You should convert it to hex, or to something else printable.
This is the usual way to calculate a fingerprint of an X.509 DER encoded certificate. Note however that the fingerprint of an OpenPGP certificate is not just a hash and cannot be calculated with this function.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
Checks whether this library is in FIPS140 mode.
Returns: return non-zero if true or zero if false.
Since: 3.3.0
This function deinitializes the global data, that were initialized using
gnutls_global_init()
.
This function performs any required precalculations, detects the supported CPU capabilities and initializes the underlying cryptographic backend. In order to free any resources taken by this call you should
gnutls_global_deinit()
when gnutls usage is no longer needed.This function increments a global counter, so that
gnutls_global_deinit()
only releases resources when it has been called as many times asgnutls_global_init()
. This is useful when GnuTLS is used by more than one library in an application. This function can be called many times, but will only do something the first time.Since GnuTLS 3.3.0 this function is only required in systems that do not support library constructors and static linking. This function also became thread safe.
A subsequent call of this function if the initial has failed will return the same error code.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
log_func: it is the audit log function
This is the function to set the audit logging function. This is a function to report important issues, such as possible attacks in the protocol. This is different from
gnutls_global_set_log_function()
because it will report also session-specific events. The session parameter will be null if there is no corresponding TLS session.
gnutls_audit_log_func
is of the form, void (*gnutls_audit_log_func)( gnutls_session_t, const char*);Since: 3.0
log_func: it's a log function
This is the function where you set the logging function gnutls is going to use. This function only accepts a character array. Normally you may not use this function since it is only used for debugging purposes.
gnutls_log_func
is of the form, void (*gnutls_log_func)( int level, const char*);
level: it's an integer from 0 to 99.
This is the function that allows you to set the log level. The level is an integer between 0 and 9. Higher values mean more verbosity. The default value is 0. Larger values should only be used with care, since they may reveal sensitive information.
Use a log level over 10 to enable all debugging options.
init: mutex initialization function
deinit: mutex deinitialization function
lock: mutex locking function
unlock: mutex unlocking function
With this function you are allowed to override the default mutex locks used in some parts of gnutls and dependent libraries. This function should be used if you have complete control of your program and libraries. Do not call this function from a library, or preferrably from any application unless really needed to. GnuTLS will use the appropriate locks for the running system.
This function must be called prior to any other gnutls function.
Since: 2.12.0
time_func: it's the system time function, a
gnutls_time_func()
callback.This is the function where you can override the default system time function. The application provided function should behave the same as the standard function.
Since: 2.12.0
session: is a
gnutls_session_t
structure.This function does the handshake of the TLS/SSL protocol, and initializes the TLS connection.
This function will fail if any problem is encountered, and will return a negative error code. In case of a client, if the client has asked to resume a session, but the server couldn't, then a full handshake will be performed.
The non-fatal errors expected by this function are:
GNUTLS_E_INTERRUPTED
,GNUTLS_E_AGAIN
, andGNUTLS_E_WARNING_ALERT_RECEIVED
. The former two interrupt the handshake procedure due to the lower layer being interrupted, and the latter because of an alert that may be sent by a server (it is always a good idea to check any received alerts). On these errors call this function again, until it returns 0; cf.gnutls_record_get_direction()
andgnutls_error_is_fatal()
.If this function is called by a server after a rehandshake request then
GNUTLS_E_GOT_APPLICATION_DATA
orGNUTLS_E_WARNING_ALERT_RECEIVED
may be returned. Note that these are non fatal errors, only in the specific case of a rehandshake. Their meaning is that the client rejected the rehandshake request or in the case ofGNUTLS_E_GOT_APPLICATION_DATA
it might also mean that some data were pending.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.
type: is a handshake message description
Convert a
gnutls_handshake_description_t
value to a string.Returns: a string that contains the name of the specified handshake message or
NULL
.
session: is a
gnutls_session_t
structure.This function is only useful to check where the last performed handshake failed. If the previous handshake succeed or was not performed at all then no meaningful value will be returned.
Check
gnutls_handshake_description_t
in gnutls.h for the available handshake descriptions.Returns: the last handshake message type received, a
gnutls_handshake_description_t
.
session: is a
gnutls_session_t
structure.This function is only useful to check where the last performed handshake failed. If the previous handshake succeed or was not performed at all then no meaningful value will be returned.
Check
gnutls_handshake_description_t
in gnutls.h for the available handshake descriptions.Returns: the last handshake message type sent, a
gnutls_handshake_description_t
.
session: is a
gnutls_session_t
structurehtype: the
gnutls_handshake_description_t
of the message to hook atpost:
GNUTLS_HOOK_
* depending on when the hook function should be calledfunc: is the function to be called
This function will set a callback to be called after or before the specified handshake message has been received or generated. This is a generalization of
gnutls_handshake_set_post_client_hello_function()
.To call the hook function prior to the message being sent/generated use
GNUTLS_HOOK_PRE
aspost
parameter,GNUTLS_HOOK_POST
to call after, andGNUTLS_HOOK_BOTH
for both cases.This callback must return 0 on success or a gnutls error code to terminate the handshake.
Note to hook at all handshake messages use an
htype
ofGNUTLS_HANDSHAKE_ANY
.Warning: You should not use this function to terminate the handshake based on client input unless you know what you are doing. Before the handshake is finished there is no way to know if there is a man-in-the-middle attack being performed.
session: is a
gnutls_session_t
structure.max: is the maximum number.
This function will set the maximum size of all handshake messages. Handshakes over this size are rejected with
GNUTLS_E_HANDSHAKE_TOO_LARGE
error code. The default value is 48kb which is typically large enough. Set this to 0 if you do not want to set an upper limit.The reason for restricting the handshake message sizes are to limit Denial of Service attacks.
session: is a
gnutls_session_t
structure.func: is the function to be called
This function will set a callback to be called after the client hello has been received (callback valid in server side only). This allows the server to adjust settings based on received extensions.
Those settings could be ciphersuites, requesting certificate, or anything else except for version negotiation (this is done before the hello message is parsed).
This callback must return 0 on success or a gnutls error code to terminate the handshake.
Since GnuTLS 3.3.5 the callback is allowed to return
GNUTLS_E_AGAIN
orGNUTLS_E_INTERRUPTED
to put the handshake on hold. In that casegnutls_handshake()
will returnGNUTLS_E_INTERRUPTED
and can be resumed when needed.Warning: You should not use this function to terminate the handshake based on client input unless you know what you are doing. Before the handshake is finished there is no way to know if there is a man-in-the-middle attack being performed.
session: is a
gnutls_session_t
structure.allow: is an integer (0 or 1)
This function will enable or disable the use of private cipher suites (the ones that start with 0xFF). By default or if
allow
is 0 then these cipher suites will not be advertised nor used.Currently GnuTLS does not include such cipher-suites or compression algorithms.
Enabling the private ciphersuites when talking to other than gnutls servers and clients may cause interoperability problems.
session: is a
gnutls_session_t
structure.random: a random value of 32-bytes
This function will explicitly set the server or client hello random value in the subsequent TLS handshake. The random value should be a 32-byte value.
Note that this function should not normally be used as gnutls will select automatically a random value for the handshake.
This function should not be used when resuming a session.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.Since 3.1.9
session: is a
gnutls_session_t
structure.ms: is a timeout value in milliseconds
This function sets the timeout for the handshake process to the provided value. Use an
ms
value of zero to disable timeout, orGNUTLS_DEFAULT_HANDSHAKE_TIMEOUT
for a reasonable default value.Since: 3.1.0
session: is a
gnutls_session_t
structure.type: one of
GNUTLS_HB_LOCAL_ALLOWED_TO_SEND
andGNUTLS_HB_PEER_ALLOWED_TO_SEND
This function will check whether heartbeats are allowed to be sent or received in this session.
Returns: Non zero if heartbeats are allowed.
Since: 3.1.2
session: is a
gnutls_session_t
structure.type: one of the GNUTLS_HB_* flags
If this function is called with the
GNUTLS_HB_PEER_ALLOWED_TO_SEND
type
, GnuTLS will allow heartbeat messages to be received. Moreover it also request the peer to accept heartbeat messages.If the
type
used isGNUTLS_HB_LOCAL_ALLOWED_TO_SEND
, then the peer will be asked to accept heartbeat messages but not send ones.The function
gnutls_heartbeat_allowed()
can be used to test Whether locally generated heartbeat messages can be accepted by the peer.Since: 3.1.2
session: is a
gnutls_session_t
structure.This function will return the milliseconds remaining for a retransmission of the previously sent ping message. This function is useful when ping is used in non-blocking mode, to estimate when to call
gnutls_heartbeat_ping()
if no packets have been received.Returns: the remaining time in milliseconds.
Since: 3.1.2
session: is a
gnutls_session_t
structure.data_size: is the length of the ping payload.
max_tries: if flags is
GNUTLS_HEARTBEAT_WAIT
then this sets the number of retransmissions. Use zero for indefinite (until timeout).flags: if
GNUTLS_HEARTBEAT_WAIT
then wait for pong or timeout instead of returning immediately.This function sends a ping to the peer. If the
flags
is set toGNUTLS_HEARTBEAT_WAIT
then it waits for a reply from the peer.Note that it is highly recommended to use this function with the flag
GNUTLS_HEARTBEAT_WAIT
, or you need to handle retransmissions and timeouts manually.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 3.1.2
session: is a
gnutls_session_t
structure.flags: should be zero
This function replies to a ping by sending a pong to the peer.
Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 3.1.2
session: is a
gnutls_session_t
structure.retrans_timeout: The time at which a retransmission will occur in milliseconds
total_timeout: The time at which the connection will be aborted, in milliseconds.
This function will override the timeouts for the DTLS heartbeat protocol. The retransmission timeout is the time after which a message from the peer is not received, the previous request will be retransmitted. The total timeout is the time after which the handshake will be aborted with
GNUTLS_E_TIMEDOUT
.If the retransmission timeout is zero then the handshake will operate in a non-blocking way, i.e., return
GNUTLS_E_AGAIN
.Since: 3.1.2
hex_data: string with data in hex format
hex_size: size of hex data
bin_data: output array with binary data
bin_size: when calling should hold maximum size of
bin_data
, on return will hold actual length ofbin_data
.Convert a buffer with hex data to binary data.
Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 2.4.0
hex_data: contain the encoded data
result: the place where decoded data will be copied
result_size: holds the size of the result
This function will decode the given encoded data, using the hex encoding used by PSK password files.
Note that hex_data should be null terminated.
Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the buffer given is not long enough, or 0 on success.
data: contain the raw data
result: the place where hex data will be copied
result_size: holds the size of the result
This function will convert the given data to printable data, using the hex encoding, as used in the PSK password files.
Note that the size of the result includes the null terminator.
Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the buffer given is not long enough, or 0 on success.
session: is a pointer to a
gnutls_session_t
structure.flags: indicate if this session is to be used for server or client.
This function initializes the current session to null. Every session must be initialized before use, so internal structures can be allocated. This function allocates structures which can only be free'd by calling
gnutls_deinit()
. ReturnsGNUTLS_E_SUCCESS
(0) on success.
flags
can be one ofGNUTLS_CLIENT
andGNUTLS_SERVER
. For a DTLS entity, the flagsGNUTLS_DATAGRAM
andGNUTLS_NONBLOCK
are also available. The latter flag will enable a non-blocking operation of the DTLS timers.The flag
GNUTLS_NO_REPLAY_PROTECTION
will disable any replay protection in DTLS mode. That must only used when replay protection is achieved using other means.Note that since version 3.1.2 this function enables some common TLS extensions such as session tickets and OCSP certificate status request in client side by default. To prevent that use the
GNUTLS_NO_EXTENSIONS
flag.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
key: is a pointer to a
gnutls_datum_t
which will contain a newly created key.key_size: The number of bytes of the key.
Generates a random key of
key_size
bytes.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, or an error code.Since: 3.0
session: is a
gnutls_session_t
structure.Get currently used key exchange algorithm.
Returns: the key exchange algorithm used in the last handshake, a
gnutls_kx_algorithm_t
value.
name: is a KX name
Convert a string to a
gnutls_kx_algorithm_t
value. The names are compared in a case insensitive way.Returns: an id of the specified KX algorithm, or
GNUTLS_KX_UNKNOWN
on error.
algorithm: is a key exchange algorithm
Convert a
gnutls_kx_algorithm_t
value to a string.Returns: a pointer to a string that contains the name of the specified key exchange algorithm, or
NULL
.
Get a list of supported key exchange algorithms.
This function is not thread safe.
Returns: a (0)-terminated list of
gnutls_kx_algorithm_t
integers indicating the available key exchange algorithms.
filename: the name of the file to load
data: Where the file will be stored
This function will load a file into a datum. The data are zero terminated but the terminating null is not included in length. The returned data are allocated using
gnutls_malloc()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.Since 3.1.0
session: is a
gnutls_session_t
structure.Get currently used MAC algorithm.
Returns: the currently used mac algorithm, a
gnutls_mac_algorithm_t
value.
name: is a MAC algorithm name
Convert a string to a
gnutls_mac_algorithm_t
value. The names are compared in a case insensitive way.Returns: a
gnutls_mac_algorithm_t
id of the specified MAC algorithm string, orGNUTLS_MAC_UNKNOWN
on failures.
algorithm: is an encryption algorithm
Returns the size of the MAC key used in TLS.
Returns: length (in bytes) of the given MAC key size, or 0 if the given MAC algorithm is invalid.
algorithm: is a MAC algorithm
Convert a
gnutls_mac_algorithm_t
value to a string.Returns: a string that contains the name of the specified MAC algorithm, or
NULL
.
Get a list of hash algorithms for use as MACs. Note that not necessarily all MACs are supported in TLS cipher suites. This function is not thread safe.
Returns: Return a (0)-terminated list of
gnutls_mac_algorithm_t
integers indicating the available MACs.
session: is a
gnutls_session_t
structure.responder_id: array with
gnutls_datum_t
with DER data of responder idresponder_id_size: number of members in
responder_id
arrayextensions: a
gnutls_datum_t
with DER encoded OCSP extensionsThis function is to be used by clients to request OCSP response from the server, using the "status_request" TLS extension. Only OCSP status type is supported. A typical server has a single OCSP response cached, so
responder_id
andextensions
should be null.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.Since: 3.1.3
session: is a
gnutls_session_t
structure.response: a
gnutls_datum_t
with DER encoded OCSP responseThis function returns the OCSP status response received from the TLS server. The
response
should be treated as constant. If no OCSP response is available thenGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.Since: 3.1.3
session: is a gnutls session
flags: should be zero
Check whether an OCSP status response was included in the handshake and whether it was checked and valid (not too old or superseded). This is a helper function when needing to decide whether to perform an OCSP validity check on the peer's certificate. Must be called after
gnutls_certificate_verify_peers3()
is called.Returns: non zero it was valid, or a zero if it wasn't sent, or sent and was invalid.
session: is a pointer to a
gnutls_session_t
structure.status: is one of GNUTLS_OPENPGP_CERT, or GNUTLS_OPENPGP_CERT_FINGERPRINT
This function will order gnutls to send the key fingerprint instead of the key in the initial handshake procedure. This should be used with care and only when there is indication or knowledge that the server can obtain the client's key.
packet: is a pointer to a
gnutls_packet_st
structure.This function will deinitialize all data associated with the received packet.
Since: 3.3.5
packet: is a
gnutls_packet_t
structure.data: will contain the data present in the
packet
structure (may beNULL
)sequence: the 8-bytes of the packet sequence number (may be
NULL
)This function returns the data and sequence number associated with the received packet.
Since: 3.3.5
header: A null terminated string with the PEM header (eg. CERTIFICATE)
b64_data: contain the encoded data
result: the place where decoded data will be copied
result_size: holds the size of the result
This function will decode the given encoded data. If the header given is non null this function will search for "——BEGIN header" and decode only this part. Otherwise it will decode the first PEM packet found.
Returns: On success
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_SHORT_MEMORY_BUFFER
is returned if the buffer given is not long enough, or 0 on success.
header: The PEM header (eg. CERTIFICATE)
b64_data: contains the encoded data
result: the place where decoded data lie
This function will decode the given encoded data. The decoded data will be allocated, and stored into result. If the header given is non null this function will search for "——BEGIN header" and decode only this part. Otherwise it will decode the first PEM packet found.
You should use
gnutls_free()
to free the returned data.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
msg: is a message to be put in the header
data: contain the raw data
result: the place where base64 data will be copied
result_size: holds the size of the result
This function will convert the given data to printable data, using the base64 encoding. This is the encoding used in PEM messages.
The output string will be null terminated, although the size will not include the terminating null.
Returns: On success
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_SHORT_MEMORY_BUFFER
is returned if the buffer given is not long enough, or 0 on success.
msg: is a message to be put in the encoded header
data: contains the raw data
result: will hold the newly allocated encoded data
This function will convert the given data to printable data, using the base64 encoding. This is the encoding used in PEM messages. This function will allocate the required memory to hold the encoded data.
You should use
gnutls_free()
to free the returned data.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
error: is a GnuTLS error code, a negative error code
This function is like
perror()
. The only difference is that it accepts an error number returned by a gnutls function.
algorithm: is a pk algorithm
Convert a
gnutls_pk_algorithm_t
value to a string.Returns: a string that contains the name of the specified public key algorithm, or
NULL
.
algo: is a public key algorithm
bits: is the number of bits
This is the inverse of
gnutls_sec_param_to_pk_bits()
. Given an algorithm and the number of bits, it will return the security parameter. This is a rough indication.Returns: The security parameter.
Since: 2.12.0
name: is a string containing a public key algorithm name.
Convert a string to a
gnutls_pk_algorithm_t
value. The names are compared in a case insensitive way. For example, gnutls_pk_get_id("RSA") will returnGNUTLS_PK_RSA
.Returns: a
gnutls_pk_algorithm_t
id of the specified public key algorithm string, orGNUTLS_PK_UNKNOWN
on failures.Since: 2.6.0
algorithm: is a public key algorithm
Convert a
gnutls_pk_algorithm_t
value to a string.Returns: a pointer to a string that contains the name of the specified public key algorithm, or
NULL
.Since: 2.6.0
Get a list of supported public key algorithms.
This function is not thread safe.
Returns: a (0)-terminated list of
gnutls_pk_algorithm_t
integers indicating the available ciphers.Since: 2.6.0
pk: is a public key algorithm
hash: a hash algorithm
This function maps public key and hash algorithms combinations to signature algorithms.
Returns: return a
gnutls_sign_algorithm_t
value, orGNUTLS_SIGN_UNKNOWN
on error.
session: is a
gnutls_session_t
structure.label_size: length of the
label
variable.label: label used in PRF computation, typically a short string.
server_random_first: non-zero if server random field should be first in seed
extra_size: length of the
extra
variable.extra: optional extra data to seed the PRF with.
outsize: size of pre-allocated output buffer to hold the output.
out: pre-allocated buffer to hold the generated data.
Applies the TLS Pseudo-Random-Function (PRF) on the master secret and the provided data, seeded with the client and server random fields, as specified in RFC5705.
The
label
variable usually contains a string denoting the purpose for the generated data. Theserver_random_first
indicates whether the client random field or the server random field should be first in the seed. Non-zero indicates that the server random field is first, 0 that the client random field is first.The
extra
variable can be used to add more data to the seed, after the random variables. It can be used to make sure the generated output is strongly connected to some additional data (e.g., a string used in user authentication).The output is placed in
out
, which must be pre-allocated.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
session: is a
gnutls_session_t
structure.label_size: length of the
label
variable.label: label used in PRF computation, typically a short string.
seed_size: length of the
seed
variable.seed: optional extra data to seed the PRF with.
outsize: size of pre-allocated output buffer to hold the output.
out: pre-allocated buffer to hold the generated data.
Apply the TLS Pseudo-Random-Function (PRF) on the master secret and the provided data.
The
label
variable usually contains a string denoting the purpose for the generated data. Theseed
usually contains data such as the client and server random, perhaps together with some additional data that is added to guarantee uniqueness of the output for a particular purpose.Because the output is not guaranteed to be unique for a particular session unless
seed
includes the client random and server random fields (the PRF would output the same data on another connection resumed from the first one), it is not recommended to use this function directly. Thegnutls_prf()
function seeds the PRF with the client and server random fields directly, and is recommended if you want to generate pseudo random data unique for each session.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
pcache: is a
gnutls_prioritity_t
structure.list: will point to an integer list
Get a list of available certificate types in the priority structure.
Returns: the number of certificate types, or an error code.
Since: 3.0
pcache: is a
gnutls_prioritity_t
structure.list: will point to an integer list
Get a list of available ciphers in the priority structure.
Returns: the number of curves, or an error code.
Since: 3.2.3
pcache: is a
gnutls_prioritity_t
structure.list: will point to an integer list
Get a list of available compression method in the priority structure.
Returns: the number of methods, or an error code.
Since: 3.0
priority_cache: is a
gnutls_prioritity_t
structure.Deinitializes the priority cache.
pcache: is a
gnutls_prioritity_t
structure.list: will point to an integer list
Get a list of available elliptic curves in the priority structure.
Returns: the number of curves, or an error code.
Since: 3.0
pcache: is a
gnutls_prioritity_t
structure.idx: is an index number.
sidx: internal index of cipher suite to get information about.
Provides the internal ciphersuite index to be used with
gnutls_cipher_suite_info()
. The indexidx
provided is an index kept at the priorities structure. It might be that a valid priorities index does not correspond to a ciphersuite and in that caseGNUTLS_E_UNKNOWN_CIPHER_SUITE
will be returned. Once the last available index is crossed thenGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Returns: On success it returns
GNUTLS_E_SUCCESS
(0), or a negative error value otherwise.
priority_cache: is a
gnutls_prioritity_t
structure.priorities: is a string describing priorities
err_pos: In case of an error this will have the position in the string the error occurred
Sets priorities for the ciphers, key exchange methods, macs and compression methods.
The
priorities
option allows you to specify a colon separated list of the cipher priorities to enable. Some keywords are defined to provide quick access to common preferences.Unless there is a special need, use the "NORMAL" keyword to apply a reasonable security level, or "NORMAL:
COMPAT
" for compatibility."PERFORMANCE" means all the "secure" ciphersuites are enabled, limited to 128 bit ciphers and sorted by terms of speed performance.
"LEGACY" the NORMAL settings for GnuTLS 3.2.x or earlier. There is no verification profile set, and the allowed DH primes are considered weak today.
"NORMAL" means all "secure" ciphersuites. The 256-bit ciphers are included as a fallback only. The ciphers are sorted by security margin.
"PFS" means all "secure" ciphersuites that support perfect forward secrecy. The 256-bit ciphers are included as a fallback only. The ciphers are sorted by security margin.
"SECURE128" means all "secure" ciphersuites of security level 128-bit or more.
"SECURE192" means all "secure" ciphersuites of security level 192-bit or more.
"SUITEB128" means all the NSA SuiteB ciphersuites with security level of 128.
"SUITEB192" means all the NSA SuiteB ciphersuites with security level of 192.
"EXPORT" means all ciphersuites are enabled, including the low-security 40 bit ciphers.
"NONE" means nothing is enabled. This disables even protocols and compression methods.
"
KEYWORD
" The system administrator imposed settings. The provided keywords will be expanded from a configuration-time provided file - default is: /etc/gnutls/default-priorities. Any keywords that follow it, will be appended to the expanded string. If there is no system string, then the function will fail. The system file should be formatted as "KEYWORD=VALUE", e.g., "SYSTEM=NORMAL:-ARCFOUR-128".Special keywords are "!", "-" and "+". "!" or "-" appended with an algorithm will remove this algorithm. "+" appended with an algorithm will add this algorithm.
Check the GnuTLS manual section "Priority strings" for detailed information.
Examples: "NONE:+VERS-TLS-ALL:+MAC-ALL:+RSA:+AES-128-CBC:+SIGN-ALL:+COMP-NULL"
"NORMAL:-ARCFOUR-128" means normal ciphers except for ARCFOUR-128.
"SECURE128:-VERS-SSL3.0:+COMP-DEFLATE" means that only secure ciphers are enabled, SSL3.0 is disabled, and libz compression enabled.
"NONE:+VERS-TLS-ALL:+AES-128-CBC:+RSA:+SHA1:+COMP-NULL:+SIGN-RSA-SHA1",
"NONE:+VERS-TLS-ALL:+AES-128-CBC:+ECDHE-RSA:+SHA1:+COMP-NULL:+SIGN-RSA-SHA1:+CURVE-SECP256R1",
"SECURE256:+SECURE128",
Note that "NORMAL:
COMPAT
" is the most compatible mode.Returns: On syntax error
GNUTLS_E_INVALID_REQUEST
is returned,GNUTLS_E_SUCCESS
on success, or an error code.
pcache: is a
gnutls_prioritity_t
structure.list: will point to an integer list
Get a list of available key exchange methods in the priority structure.
Returns: the number of curves, or an error code.
Since: 3.2.3
pcache: is a
gnutls_prioritity_t
structure.list: will point to an integer list
Get a list of available MAC algorithms in the priority structure.
Returns: the number of curves, or an error code.
Since: 3.2.3
pcache: is a
gnutls_prioritity_t
structure.list: will point to an integer list
Get a list of available TLS version numbers in the priority structure.
Returns: the number of protocols, or an error code.
Since: 3.0
session: is a
gnutls_session_t
structure.priority: is a
gnutls_priority_t
structure.Sets the priorities to use on the ciphers, key exchange methods, macs and compression methods.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
session: is a
gnutls_session_t
structure.priorities: is a string describing priorities
err_pos: In case of an error this will have the position in the string the error occured
Sets the priorities to use on the ciphers, key exchange methods, macs and compression methods. This function avoids keeping a priority cache and is used to directly set string priorities to a TLS session. For documentation check the
gnutls_priority_init()
.To simply use a reasonable default, consider using
gnutls_set_default_priority()
.Returns: On syntax error
GNUTLS_E_INVALID_REQUEST
is returned,GNUTLS_E_SUCCESS
on success, or an error code.
pcache: is a
gnutls_prioritity_t
structure.list: will point to an integer list
Get a list of available signature algorithms in the priority structure.
Returns: the number of algorithms, or an error code.
Since: 3.0
name: is a protocol name
The names are compared in a case insensitive way.
Returns: an id of the specified protocol, or
GNUTLS_VERSION_UNKNOWN
on error.
version: is a (gnutls) version number
Convert a
gnutls_protocol_t
value to a string.Returns: a string that contains the name of the specified TLS version (e.g., "TLS1.0"), or
NULL
.
session: is a
gnutls_session_t
structure.Get TLS version, a
gnutls_protocol_t
value.Returns: The version of the currently used protocol.
Get a list of supported protocols, e.g. SSL 3.0, TLS 1.0 etc.
This function is not thread safe.
Returns: a (0)-terminated list of
gnutls_protocol_t
integers indicating the available protocols.
sc: is a pointer to a
gnutls_psk_server_credentials_t
structure.This structure is complex enough to manipulate directly thus this helper function is provided in order to allocate it.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
sc: is a pointer to a
gnutls_psk_server_credentials_t
structure.This structure is complex enough to manipulate directly thus this helper function is provided in order to allocate it.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
session: is a gnutls session
The PSK identity hint may give the client help in deciding which username to use. This should only be called in case of PSK authentication and in case of a client.
Returns: the identity hint of the peer, or
NULL
in case of an error.Since: 2.4.0
sc: is a
gnutls_psk_client_credentials_t
structure.This structure is complex enough to manipulate directly thus this helper function is provided in order to free (deallocate) it.
sc: is a
gnutls_psk_server_credentials_t
structure.This structure is complex enough to manipulate directly thus this helper function is provided in order to free (deallocate) it.
session: is a gnutls session
This should only be called in case of PSK authentication and in case of a server.
Returns: the username of the peer, or
NULL
in case of an error.
res: is a
gnutls_psk_client_credentials_t
structure.username: is the user's zero-terminated userid
key: is the user's key
flags: indicate the format of the key, either
GNUTLS_PSK_KEY_RAW
orGNUTLS_PSK_KEY_HEX
.This function sets the username and password, in a gnutls_psk_client_credentials_t structure. Those will be used in PSK authentication.
username
should be an ASCII string or UTF-8 strings prepared using the "SASLprep" profile of "stringprep". The key can be either in raw byte format or in Hex format (without the 0x prefix).Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
cred: is a
gnutls_psk_server_credentials_t
structure.func: is the callback function
This function can be used to set a callback to retrieve the username and password for client PSK authentication. The callback's function form is: int (*callback)(gnutls_session_t, char** username, gnutls_datum_t* key);
The
username
andkey
->data must be allocated usinggnutls_malloc()
.username
should be ASCII strings or UTF-8 strings prepared using the "SASLprep" profile of "stringprep".The callback function will be called once per handshake.
The callback function should return 0 on success. -1 indicates an error.
res: is a gnutls_psk_server_credentials_t structure
func: is the function to be called
This function will set a callback in order for the server to get the Diffie-Hellman or RSA parameters for PSK authentication. The callback should return
GNUTLS_E_SUCCESS
(0) on success.
res: is a
gnutls_psk_server_credentials_t
structure.password_file: is the PSK password file (passwd.psk)
This function sets the password file, in a
gnutls_psk_server_credentials_t
structure. This password file holds usernames and keys and will be used for PSK authentication.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
cred: is a
gnutls_psk_server_credentials_t
structure.func: is the callback function
This function can be used to set a callback to retrieve the user's PSK credentials. The callback's function form is: int (*callback)(gnutls_session_t, const char* username, gnutls_datum_t* key);
username
contains the actual username. Thekey
must be filled in using thegnutls_malloc()
.In case the callback returned a negative number then gnutls will assume that the username does not exist.
The callback function will only be called once per handshake. The callback function should return 0 on success, while -1 indicates an error.
res: is a
gnutls_psk_server_credentials_t
structure.hint: is the PSK identity hint string
This function sets the identity hint, in a
gnutls_psk_server_credentials_t
structure. This hint is sent to the client to help it chose a good PSK credential (i.e., username and password).Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.Since: 2.4.0
res: is a gnutls_psk_server_credentials_t structure
dh_params: is a structure that holds Diffie-Hellman parameters.
This function will set the Diffie-Hellman parameters for an anonymous server to use. These parameters will be used in Diffie-Hellman exchange with PSK cipher suites.
res: is a
gnutls_certificate_credentials_t
structurefunc: is the function to be called
This function will set a callback in order for the server to get the Diffie-Hellman parameters for PSK authentication. The callback should return
GNUTLS_E_SUCCESS
(0) on success.
type: The type of the random art
key_type: The type of the key (RSA, DSA etc.)
key_size: The size of the key in bits
fpr: The fingerprint of the key
fpr_size: The size of the fingerprint
art: The returned random art
This function will convert a given fingerprint to an "artistic" image. The returned image is allocated using
gnutls_malloc()
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
session: is a
gnutls_session_t
structureorig: is the original range provided by the user
next: is the returned range that can be conveyed in a TLS record
remainder: is the returned remaining range
This function should be used when it is required to hide the length of very long data that cannot be directly provided to
gnutls_record_send_range()
. In that case this function should be called with the desired length hiding range inorig
. The returnednext
value should then be used in the next call tognutls_record_send_range()
with the partial data. That process should be repeated untilremainder
is (0,0).Returns: 0 in case splitting succeeds, non zero in case of error. Note that
orig
is not changed, while the values ofnext
andremainder
are modified to store the resulting values.
session: is a
gnutls_session_t
structure.If the session supports length-hiding padding, you can invoke
gnutls_range_send_message()
to send a message whose length is hidden in the given range. If the session does not support length hiding padding, you can use the standardgnutls_record_send()
function, orgnutls_range_send_message()
making sure that the range is the same as the length of the message you are trying to send.Returns: true (1) if the current session supports length-hiding padding, false (0) if the current session does not.
session: is a
gnutls_session_t
structure.This function checks if there pending corked data in the gnutls buffers –see
gnutls_cork()
.Returns: Returns the size of the corked data or zero.
Since: 3.2.8
session: is a
gnutls_session_t
structure.This function checks if there are unread data in the gnutls buffers. If the return value is non-zero the next call to
gnutls_record_recv()
is guaranteed not to block.Returns: Returns the size of the data or zero.
session: is a
gnutls_session_t
structure.If called
gnutls_record_send()
will no longer send partial records. All queued records will be sent whengnutls_uncork()
is called, or when the maximum record size is reached.This function is safe to use with DTLS after GnuTLS 3.3.0.
Since: 3.1.9
session: is a
gnutls_session_t
structure.Used to disabled padding in TLS 1.0 and above. Normally you do not need to use this function, but there are buggy clients that complain if a server pads the encrypted data. This of course will disable protection against statistical attacks on the data.
This functions is defunt since 3.1.7. Random padding is disabled by default unless requested using
gnutls_range_send_message()
.
session: is a
gnutls_session_t
structure.This function provides information about the internals of the record protocol and is only useful if a prior gnutls function call (e.g.
gnutls_handshake()
) was interrupted for some reason, that is, if a function returnedGNUTLS_E_INTERRUPTED
orGNUTLS_E_AGAIN
. In such a case, you might want to callselect()
orpoll()
before calling the interrupted gnutls function again. To tell you whether a file descriptor should be selected for either reading or writing,gnutls_record_get_direction()
returns 0 if the interrupted function was trying to read data, and 1 if it was trying to write data.Returns: 0 if trying to read data, 1 if trying to write data.
session: is a
gnutls_session_t
structure.Get the record size. The maximum record size is negotiated by the client after the first handshake message.
Returns: The maximum record packet size in this connection.
session: is
gnutls_session_t
This function will return the set size in bytes of the overhead due to TLS (or DTLS) per record.
Since: 3.2.2
session: is a
gnutls_session_t
structure.data: the buffer that the data will be read into
data_size: the number of requested bytes
This function has the similar semantics with
recv()
. The only difference is that it accepts a GnuTLS session, and uses different error codes. In the special case that a server requests a renegotiation, the client may receive an error code ofGNUTLS_E_REHANDSHAKE
. This message may be simply ignored, replied with an alertGNUTLS_A_NO_RENEGOTIATION
, or replied with a new handshake, depending on the client's will. IfEINTR
is returned by the internal push function (the default isrecv()
) thenGNUTLS_E_INTERRUPTED
will be returned. IfGNUTLS_E_INTERRUPTED
orGNUTLS_E_AGAIN
is returned, you must call this function again to get the data. See alsognutls_record_get_direction()
. A server may also receiveGNUTLS_E_REHANDSHAKE
when a client has initiated a handshake. In that case the server can only initiate a handshake or terminate the connection.Returns: The number of bytes received and zero on EOF (for stream connections). A negative error code is returned in case of an error. The number of bytes received might be less than the requested
data_size
.
session: is a
gnutls_session_t
structure.packet: the structure that will hold the packet data
This is a lower-level function thatn
gnutls_record_recv()
and allows to directly receive the whole decrypted packet. That avoids a memory copy, and is mostly applicable to applications seeking high performance.The received packet is accessed using
gnutls_packet_get()
and must be deinitialized usinggnutls_packet_deinit()
. The returned packet will beNULL
if the return value is zero (EOF).Returns: The number of bytes received and zero on EOF (for stream connections). A negative error code is returned in case of an error.
Since: 3.3.5
session: is a
gnutls_session_t
structure.data: the buffer that the data will be read into
data_size: the number of requested bytes
seq: is the packet's 64-bit sequence number. Should have space for 8 bytes.
This function is the same as
gnutls_record_recv()
, except that it returns in addition to data, the sequence number of the data. This is useful in DTLS where record packets might be received out-of-order. The returned 8-byte sequence number is an integer in big-endian format and should be treated as a unique message identification.Returns: The number of bytes received and zero on EOF. A negative error code is returned in case of an error. The number of bytes received might be less than
data_size
.Since: 3.0
session: is a
gnutls_session_t
structure.data: contains the data to send
data_size: is the length of the data
This function has the similar semantics with
send()
. The only difference is that it accepts a GnuTLS session, and uses different error codes. Note that if the send buffer is full,send()
will block this function. See thesend()
documentation for more information.You can replace the default push function which is
send()
, by usinggnutls_transport_set_push_function()
.If the EINTR is returned by the internal push function then
GNUTLS_E_INTERRUPTED
will be returned. IfGNUTLS_E_INTERRUPTED
orGNUTLS_E_AGAIN
is returned, you must call this function again, with the exact same parameters; alternatively you could provide aNULL
pointer for data, and 0 for size. cf.gnutls_record_get_direction()
.Note that in DTLS this function will return the
GNUTLS_E_LARGE_PACKET
error code if the send data exceed the data MTU value - as returned bygnutls_dtls_get_data_mtu()
. The errno value EMSGSIZE also maps toGNUTLS_E_LARGE_PACKET
. Note that since 3.2.13 this function can be called under cork in DTLS mode, and will refuse to send data over the MTU size by returningGNUTLS_E_LARGE_PACKET
.Returns: The number of bytes sent, or a negative error code. The number of bytes sent might be less than
data_size
. The maximum number of bytes this function can send in a single call depends on the negotiated maximum record size.
session: is a
gnutls_session_t
structure.data: contains the data to send.
data_size: is the length of the data.
range: is the range of lengths in which the real data length must be hidden.
This function operates like
gnutls_record_send()
but, whilegnutls_record_send()
adds minimal padding to each TLS record, this function uses the TLS extra-padding feature to conceal the real data size within the range of lengths provided. Some TLS sessions do not support extra padding (e.g. stream ciphers in standard TLS or SSL3 sessions). To know whether the current session supports extra padding, and hence length hiding, use thegnutls_record_can_use_length_hiding()
function.Note: This function currently is only limited to blocking sockets.
Returns: The number of bytes sent (that is data_size in a successful invocation), or a negative error code.
session: is a
gnutls_session_t
structure.i: is the desired value of maximum empty records that can be accepted in a row.
Used to set the maximum number of empty fragments that can be accepted in a row. Accepting many empty fragments is useful for receiving length-hidden content, where empty fragments filled with pad are sent to hide the real length of a message. However, a malicious peer could send empty fragments to mount a DoS attack, so as a safety measure, a maximum number of empty fragments is accepted by default. If you know your application must accept a given number of empty fragments in a row, you can use this function to set the desired value.
session: is a
gnutls_session_t
structure.size: is the new size
This function sets the maximum record packet size in this connection. This property can only be set to clients. The server may choose not to accept the requested size.
Acceptable values are 512(=2^9), 1024(=2^10), 2048(=2^11) and 4096(=2^12). The requested record size does get in effect immediately only while sending data. The receive part will take effect after a successful handshake.
This function uses a TLS extension called 'max record size'. Not all TLS implementations use or even understand this extension.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
session: is a
gnutls_session_t
structure.ms: is a timeout value in milliseconds
This function sets the receive timeout for the record layer to the provided value. Use an
ms
value of zero to disable timeout (the default).Since: 3.1.7
session: is a
gnutls_session_t
structure.flags: Could be zero or
GNUTLS_RECORD_WAIT
This resets the effect of
gnutls_cork()
, and flushes any pending data. If theGNUTLS_RECORD_WAIT
flag is specified then this function will block until the data is sent or a fatal error occurs (i.e., the function will retry onGNUTLS_E_AGAIN
andGNUTLS_E_INTERRUPTED
).If the flag
GNUTLS_RECORD_WAIT
is not specified and the function is interrupted then theGNUTLS_E_AGAIN
orGNUTLS_E_INTERRUPTED
errors will be returned. To obtain the data left in the corked buffer usegnutls_record_check_corked()
.Returns: On success the number of transmitted data is returned, or otherwise a negative error code.
Since: 3.1.9
session: is a
gnutls_session_t
structure.This function will renegotiate security parameters with the client. This should only be called in case of a server.
This message informs the peer that we want to renegotiate parameters (perform a handshake).
If this function succeeds (returns 0), you must call the
gnutls_handshake()
function in order to negotiate the new parameters.Since TLS is full duplex some application data might have been sent during peer's processing of this message. In that case one should call
gnutls_record_recv()
until GNUTLS_E_REHANDSHAKE is returned to clear any pending data. Care must be taken if rehandshake is mandatory to terminate if it does not start after some threshold.If the client does not wish to renegotiate parameters he should reply with an alert message, thus the return code will be
GNUTLS_E_WARNING_ALERT_RECEIVED
and the alert will beGNUTLS_A_NO_RENEGOTIATION
. A client may also choose to ignore this message.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.
session: is a
gnutls_session_t
structure.Can be used to check whether safe renegotiation is being used in the current session.
Returns: 0 when safe renegotiation is not used and non (0) when safe renegotiation is used.
Since: 2.10.0
param: is a security parameter
Convert a
gnutls_sec_param_t
value to a string.Returns: a pointer to a string that contains the name of the specified security level, or
NULL
.Since: 2.12.0
algo: is a public key algorithm
param: is a security parameter
When generating private and public key pairs a difficult question is which size of "bits" the modulus will be in RSA and the group size in DSA. The easy answer is 1024, which is also wrong. This function will convert a human understandable security parameter to an appropriate size for the specific algorithm.
Returns: The number of bits, or (0).
Since: 2.12.0
param: is a security parameter
This function will return the number of bits that correspond to symmetric cipher strength for the given security parameter.
Returns: The number of bits, or (0).
Since: 3.3.0
session: is a
gnutls_session_t
structure.data: will hold the data
data_length: will hold the data length. Must hold the maximum size of data.
type: will hold the server name indicator type
indx: is the index of the server_name
This function will allow you to get the name indication (if any), a client has sent. The name indication may be any of the enumeration gnutls_server_name_type_t.
If
type
is GNUTLS_NAME_DNS, then this function is to be used by servers that support virtual hosting, and the data will be a null terminated UTF-8 string.If
data
has not enough size to hold the server name GNUTLS_E_SHORT_MEMORY_BUFFER is returned, anddata_length
will hold the required size.
index
is used to retrieve more than one server names (if sent by the client). The first server name has an index of 0, the second 1 and so on. If no name with the given index exists GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
session: is a
gnutls_session_t
structure.type: specifies the indicator type
name: is a string that contains the server name.
name_length: holds the length of name
This function is to be used by clients that want to inform (via a TLS extension mechanism) the server of the name they connected to. This should be used by clients that connect to servers that do virtual hosting.
The value of
name
depends on thetype
type. In case ofGNUTLS_NAME_DNS
, an ASCII (0)-terminated domain name string, without the trailing dot, is expected. IPv4 or IPv6 addresses are not permitted.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
session: is a
gnutls_session_t
structure.cbtype: an
gnutls_channel_binding_t
enumeration typecb: output buffer array with data
Extract given channel binding data of the
cbtype
(e.g.,GNUTLS_CB_TLS_UNIQUE
) type.Returns:
GNUTLS_E_SUCCESS
on success,GNUTLS_E_UNIMPLEMENTED_FEATURE
if thecbtype
is unsupported,GNUTLS_E_CHANNEL_BINDING_NOT_AVAILABLE
if the data is not currently available, or an error code.Since: 2.12.0
session: is a
gnutls_session_t
structure.This function can be used to disable certain (security) features in TLS in order to maintain maximum compatibility with buggy clients. Because several trade-offs with security are enabled, if required they will be reported through the audit subsystem.
Normally only servers that require maximum compatibility with everything out there, need to call this function.
Note that this function must be called after any call to gnutls_priority functions.
session: is a
gnutls_session_t
structure.Clears the invalid flag in a session. That means that sessions were corrupt or invalid data were received can be re-used. Use only when debugging or experimenting with the TLS protocol. Should not be used in typical applications.
session: is a
gnutls_session_t
structure.session_data: is a pointer to space to hold the session.
session_data_size: is the session_data's size, or it will be set by the function.
Returns all session parameters needed to be stored to support resumption. The client should call this, and store the returned session data. A session may be resumed later by calling
gnutls_session_set_data()
. This function must be called after a successful handshake.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
session: is a
gnutls_session_t
structure.data: is a pointer to a datum that will hold the session.
Returns all session parameters needed to be stored to support resumption. The client should call this, and store the returned session data. A session may be resumed later by calling
gnutls_session_set_data()
. This function must be called after a successful handshake. The returneddata
are allocated and must be released usinggnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
session: is a gnutls session
This function returns a string describing the current session. The string is null terminated and allocated using
gnutls_malloc()
.Returns: a description of the protocols and algorithms in the current session.
Since: 3.1.10
session: is a
gnutls_session_t
structure.session_id: is a pointer to space to hold the session id.
session_id_size: initially should contain the maximum
session_id
size and will be updated.Returns the current session ID. This can be used if you want to check if the next session you tried to resume was actually resumed. That is because resumed sessions share the same session ID with the original session.
The session ID is selected by the server, that identify the current session. In TLS 1.0 and SSL 3.0 session id is always less than 32 bytes.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
session: is a
gnutls_session_t
structure.session_id: will point to the session ID.
Returns the current session ID. The returned data should be treated as constant.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.Since: 3.1.4
session: is a
gnutls_session_t
structure.Get user pointer for session. Useful in callbacks. This is the pointer set with
gnutls_session_set_ptr()
.Returns: the user given pointer from the session structure, or
NULL
if it was never set.
session: is a
gnutls_session_t
structure.client: the client part of the random
server: the server part of the random
This function returns pointers to the client and server random fields used in the TLS handshake. The pointers are not to be modified or deallocated.
If a client random value has not yet been established, the output will be garbage.
Since: 3.0
session: is a
gnutls_session_t
structure.Check whether session is resumed or not.
Returns: non zero if this session is resumed, or a zero if this is a new session.
session: is a
gnutls_session_t
structure.Check whether the client has asked for session resumption. This function is valid only on server side.
Returns: non zero if session resumption was asked, or a zero if not.
session: is a
gnutls_session_t
structure.session_data: is a pointer to space to hold the session.
session_data_size: is the session's size
Sets all session parameters, in order to resume a previously established session. The session data given must be the one returned by
gnutls_session_get_data()
. This function should be called beforegnutls_handshake()
.Keep in mind that session resuming is advisory. The server may choose not to resume the session, thus a full handshake will be performed.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
session: is a
gnutls_session_t
structure.sid: the session identifier
This function sets the session ID to be used in a client hello. This is a function intended for exceptional uses. Do not use this function unless you are implementing a custom protocol.
To set session resumption parameters use
gnutls_session_set_data()
instead.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
session: is a
gnutls_session_t
structure.entity: GNUTLS_SERVER or GNUTLS_CLIENT
version: the TLS protocol version
kx: the key exchange method
cipher: the cipher
mac: the MAC algorithm
comp: the compression method
master: the master key to use
session_id: the session identifier
This function sets the premaster secret in a session. This is a function intended for exceptional uses. Do not use this function unless you are implementing a legacy protocol. Use
gnutls_session_set_data()
instead.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
session: is a
gnutls_session_t
structure.ptr: is the user pointer
This function will set (associate) the user given pointer
ptr
to the session structure. This pointer can be accessed withgnutls_session_get_ptr()
.
session: is a
gnutls_session_t
structure.Request that the client should attempt session resumption using SessionTicket.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, or an error code.Since: 2.10.0
session: is a
gnutls_session_t
structure.key: key to encrypt session parameters.
Request that the server should attempt session resumption using SessionTicket.
key
must be initialized withgnutls_session_ticket_key_generate()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, or an error code.Since: 2.10.0
key: is a pointer to a
gnutls_datum_t
which will contain a newly created key.Generate a random key to encrypt security parameters within SessionTicket.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, or an error code.Since: 2.10.0
session: is a
gnutls_session_t
structure.Sets some default priority on the ciphers, key exchange methods, macs and compression methods.
This typically sets a default priority that is considered sufficiently secure to establish encrypted sessions.
This function is kept around for backwards compatibility, but because of its wide use it is still fully supported. If you wish to allow users to provide a string that specify which ciphers to use (which is recommended), you should use
gnutls_priority_set_direct()
orgnutls_priority_set()
instead.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
session: is a
gnutls_session_t
structure.Returns the signature algorithm that is (or will be) used in this session by the server to sign data.
Returns: The sign algorithm or
GNUTLS_SIGN_UNKNOWN
.Since: 3.1.1
session: is a
gnutls_session_t
structure.Returns the signature algorithm that is (or will be) used in this session by the client to sign data.
Returns: The sign algorithm or
GNUTLS_SIGN_UNKNOWN
.Since: 3.1.11
session: is a
gnutls_session_t
structure.indx: is an index of the signature algorithm to return
algo: the returned certificate type will be stored there
Returns the signature algorithm specified by index that was requested by the peer. If the specified index has no data available this function returns
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
. If the negotiated TLS version does not support signature algorithms thenGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned even for the first index. The first index is 0.This function is useful in the certificate callback functions to assist in selecting the correct certificate.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.Since: 2.10.0
sign: is a signature algorithm
This function returns the digest algorithm corresponding to the given signature algorithms.
Since: 3.1.1
Returns: return a
gnutls_digest_algorithm_t
value, orGNUTLS_DIG_UNKNOWN
on error.
name: is a sign algorithm name
The names are compared in a case insensitive way.
Returns: return a
gnutls_sign_algorithm_t
value corresponding to the specified algorithm, orGNUTLS_SIGN_UNKNOWN
on error.
algorithm: is a sign algorithm
Convert a
gnutls_sign_algorithm_t
value to a string.Returns: a string that contains the name of the specified sign algorithm, or
NULL
.
sign: is a signature algorithm
This function returns the public key algorithm corresponding to the given signature algorithms.
Since: 3.1.1
Returns: return a
gnutls_pk_algorithm_t
value, orGNUTLS_PK_UNKNOWN
on error.
algorithm: is a sign algorithm
Returns: Non-zero if the provided signature algorithm is considered to be secure.
Get a list of supported public key signature algorithms.
Returns: a (0)-terminated list of
gnutls_sign_algorithm_t
integers indicating the available ciphers.
sc: is a pointer to a
gnutls_srp_server_credentials_t
structure.This structure is complex enough to manipulate directly thus this helper function is provided in order to allocate it.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, or an error code.
sc: is a pointer to a
gnutls_srp_server_credentials_t
structure.This structure is complex enough to manipulate directly thus this helper function is provided in order to allocate it.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, or an error code.
b64_data: contain the encoded data
result: the place where decoded data will be copied
result_size: holds the size of the result
This function will decode the given encoded data, using the base64 encoding found in libsrp.
Note that
b64_data
should be null terminated.Warning! This base64 encoding is not the "standard" encoding, so do not use it for non-SRP purposes.
Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the buffer given is not long enough, or 0 on success.
b64_data: contains the encoded data
result: the place where decoded data lie
This function will decode the given encoded data. The decoded data will be allocated, and stored into result. It will decode using the base64 algorithm as used in libsrp.
You should use
gnutls_free()
to free the returned data.Warning! This base64 encoding is not the "standard" encoding, so do not use it for non-SRP purposes.
Returns: 0 on success, or an error code.
data: contain the raw data
result: the place where base64 data will be copied
result_size: holds the size of the result
This function will convert the given data to printable data, using the base64 encoding, as used in the libsrp. This is the encoding used in SRP password files. If the provided buffer is not long enough GNUTLS_E_SHORT_MEMORY_BUFFER is returned.
Warning! This base64 encoding is not the "standard" encoding, so do not use it for non-SRP purposes.
Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the buffer given is not long enough, or 0 on success.
data: contains the raw data
result: will hold the newly allocated encoded data
This function will convert the given data to printable data, using the base64 encoding. This is the encoding used in SRP password files. This function will allocate the required memory to hold the encoded data.
You should use
gnutls_free()
to free the returned data.Warning! This base64 encoding is not the "standard" encoding, so do not use it for non-SRP purposes.
Returns: 0 on success, or an error code.
sc: is a
gnutls_srp_client_credentials_t
structure.This structure is complex enough to manipulate directly thus this helper function is provided in order to free (deallocate) it.
sc: is a
gnutls_srp_server_credentials_t
structure.This structure is complex enough to manipulate directly thus this helper function is provided in order to free (deallocate) it.
session: is a gnutls session
This function will return the username of the peer. This should only be called in case of SRP authentication and in case of a server. Returns NULL in case of an error.
Returns: SRP username of the peer, or NULL in case of error.
res: is a
gnutls_srp_client_credentials_t
structure.username: is the user's userid
password: is the user's password
This function sets the username and password, in a
gnutls_srp_client_credentials_t
structure. Those will be used in SRP authentication.username
andpassword
should be ASCII strings or UTF-8 strings prepared using the "SASLprep" profile of "stringprep".Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, or an error code.
cred: is a
gnutls_srp_server_credentials_t
structure.func: is the callback function
This function can be used to set a callback to retrieve the username and password for client SRP authentication. The callback's function form is:
int (*callback)(gnutls_session_t, char** username, char**password);
The
username
andpassword
must be allocated usinggnutls_malloc()
.username
andpassword
should be ASCII strings or UTF-8 strings prepared using the "SASLprep" profile of "stringprep".The callback function will be called once per handshake before the initial hello message is sent.
The callback should not return a negative error code the second time called, since the handshake procedure will be aborted.
The callback function should return 0 on success. -1 indicates an error.
session: is a
gnutls_session_t
structure.bits: is the number of bits
This function sets the minimum accepted number of bits, for use in an SRP key exchange. If zero, the default 2048 bits will be used.
In the client side it sets the minimum accepted number of bits. If a server sends a prime with less bits than that
GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER
will be returned by the handshake.This function has no effect in server side.
Since: 2.6.0
res: is a
gnutls_srp_server_credentials_t
structure.password_file: is the SRP password file (tpasswd)
password_conf_file: is the SRP password conf file (tpasswd.conf)
This function sets the password files, in a
gnutls_srp_server_credentials_t
structure. Those password files hold usernames and verifiers and will be used for SRP authentication.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, or an error code.
cred: is a
gnutls_srp_server_credentials_t
structure.func: is the callback function
This function can be used to set a callback to retrieve the user's SRP credentials. The callback's function form is:
int (*callback)(gnutls_session_t, const char* username, gnutls_datum_t *salt, gnutls_datum_t *verifier, gnutls_datum_t *generator, gnutls_datum_t *prime);
username
contains the actual username. Thesalt
,verifier
,generator
andprime
must be filled in using thegnutls_malloc()
. For convenienceprime
andgenerator
may also be one of the static parameters defined in gnutls.h.Initially, the data field is NULL in every
gnutls_datum_t
structure that the callback has to fill in. When the callback is done GnuTLS deallocates all of those buffers which are non-NULL, regardless of the return value.In order to prevent attackers from guessing valid usernames, if a user does not exist, g and n values should be filled in using a random user's parameters. In that case the callback must return the special value (1). See
gnutls_srp_set_server_fake_salt_seed
too. If this is not required for your application, return a negative number from the callback to abort the handshake.The callback function will only be called once per handshake. The callback function should return 0 on success, while -1 indicates an error.
cred: is a
gnutls_srp_server_credentials_t
structureseed: is the seed data, only needs to be valid until the function returns; size of the seed must be greater than zero
salt_length: is the length of the generated fake salts
This function sets the seed that is used to generate salts for invalid (non-existent) usernames.
In order to prevent attackers from guessing valid usernames, when a user does not exist gnutls generates a salt and a verifier and proceeds with the protocol as usual. The authentication will ultimately fail, but the client cannot tell whether the username is valid (exists) or invalid.
If an attacker learns the seed, given a salt (which is part of the handshake) which was generated when the seed was in use, it can tell whether or not the authentication failed because of an unknown username. This seed cannot be used to reveal application data or passwords.
salt_length
should represent the salt length your application uses. Generating fake salts longer than 20 bytes is not supported.By default the seed is a random value, different each time a
gnutls_srp_server_credentials_t
is allocated and fake salts are 16 bytes long.Since: 3.3.0
username: is the user's name
password: is the user's password
salt: should be some randomly generated bytes
generator: is the generator of the group
prime: is the group's prime
res: where the verifier will be stored.
This function will create an SRP verifier, as specified in RFC2945. The
prime
andgenerator
should be one of the static parameters defined in gnutls/gnutls.h or may be generated.The verifier will be allocated with
gnutls_malloc
() and will be stored inres
using binary format.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, or an error code.
session: is a
gnutls_session_t
structure.key_material: Space to hold the generated key material
key_material_size: The maximum size of the key material
client_key: The master client write key, pointing inside the key material
client_salt: The master client write salt, pointing inside the key material
server_key: The master server write key, pointing inside the key material
server_salt: The master server write salt, pointing inside the key material
This is a helper function to generate the keying material for SRTP. It requires the space of the key material to be pre-allocated (should be at least 2x the maximum key size and salt size). The
client_key
,client_salt
,server_key
andserver_salt
are convenience datums that point inside the key material. They may beNULL
.Returns: On success the size of the key material is returned, otherwise,
GNUTLS_E_SHORT_MEMORY_BUFFER
if the buffer given is not sufficient, or a negative error code.Since 3.1.4
session: is a
gnutls_session_t
structure.mki: will hold the MKI
This function exports the negotiated Master Key Identifier, received by the peer if any. The returned value in
mki
should be treated as constant and valid only during the session's lifetime.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.Since 3.1.4
name: The name of the profile to look up
profile: Will hold the profile id
This function allows you to look up a profile based on a string.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.Since 3.1.4
profile: The profile to look up a string for
This function allows you to get the corresponding name for a SRTP protection profile.
Returns: On success, the name of a SRTP profile as a string, otherwise NULL.
Since 3.1.4
session: is a
gnutls_session_t
structure.profile: will hold the profile
This function allows you to get the negotiated SRTP profile.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.Since 3.1.4
session: is a
gnutls_session_t
structure.mki: holds the MKI
This function sets the Master Key Identifier, to be used by this session (if any).
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.Since 3.1.4
session: is a
gnutls_session_t
structure.profile: is the profile id to add.
This function is to be used by both clients and servers, to declare what SRTP profiles they support, to negotiate with the peer.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.Since 3.1.4
session: is a
gnutls_session_t
structure.profiles: is a string that contains the supported SRTP profiles, separated by colons.
err_pos: In case of an error this will have the position in the string the error occured, may be NULL.
This function is to be used by both clients and servers, to declare what SRTP profiles they support, to negotiate with the peer.
Returns: On syntax error
GNUTLS_E_INVALID_REQUEST
is returned,GNUTLS_E_SUCCESS
on success, or an error code.Since 3.1.4
db_name: A file specifying the stored keys (use NULL for the default)
tdb: A storage structure or NULL to use the default
host: The peer's name
service: non-NULL if this key is specific to a service (e.g. http)
hash_algo: The hash algorithm type
hash: The raw hash
expiration: The expiration time (use 0 to disable expiration)
flags: should be 0.
This function will store the provided hash commitment to the list of stored public keys. The key with the given hash will be considered valid until the provided expiration time.
The
store
variable if non-null specifies a custom backend for the storage of entries. If it is NULL then the default file backend will be used.Note that this function is not thread safe with the default backend.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
db_name: A file specifying the stored keys (use NULL for the default)
tdb: A storage structure or NULL to use the default
host: The peer's name
service: non-NULL if this key is specific to a service (e.g. http)
cert_type: The type of the certificate
cert: The data of the certificate
expiration: The expiration time (use 0 to disable expiration)
flags: should be 0.
This function will store the provided (raw or DER-encoded) certificate to the list of stored public keys. The key will be considered valid until the provided expiration time.
The
store
variable if non-null specifies a custom backend for the storage of entries. If it is NULL then the default file backend will be used.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0.13
error: is a GnuTLS error code, a negative error code
This function is similar to strerror. The difference is that it accepts an error number returned by a gnutls function; In case of an unknown error a descriptive string is sent instead of
NULL
.Error codes are always a negative error code.
Returns: A string explaining the GnuTLS error message.
error: is an error returned by a gnutls function.
Return the GnuTLS error code define as a string. For example, gnutls_strerror_name (GNUTLS_E_DH_PRIME_UNACCEPTABLE) will return the string "GNUTLS_E_DH_PRIME_UNACCEPTABLE".
Returns: A string corresponding to the symbol name of the error code.
Since: 2.6.0
type: is a supplemental data format type
Convert a
gnutls_supplemental_data_format_type_t
value to a string.Returns: a string that contains the name of the specified supplemental data format type, or
NULL
for unknown types.
tdb: The structure to be deinitialized
This function will deinitialize a public key trust storage structure.
tdb: The structure to be initialized
This function will initialize a public key trust storage structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
tdb: The trust storage
cstore: The commitment storage function
This function will associate a commitment (hash) storage function with the trust storage structure. The function is of the following form.
gnutls_tdb_store_commitment_func(const char* db_name, const char* host, const char* service, time_t expiration, gnutls_digest_algorithm_t, const gnutls_datum_t* hash);
tdb: The trust storage
store: The storage function
This function will associate a storage function with the trust storage structure. The function is of the following form.
gnutls_tdb_store_func(const char* db_name, const char* host, const char* service, time_t expiration, const gnutls_datum_t* pubkey);
tdb: The trust storage
verify: The verification function
This function will associate a retrieval function with the trust storage structure. The function is of the following form.
gnutls_tdb_verify_func(const char* db_name, const char* host, const char* service, const gnutls_datum_t* pubkey);
session: is a
gnutls_session_t
structure.Used to get the first argument of the transport function (like PUSH and PULL). This must have been set using
gnutls_transport_set_int()
.Returns: The first argument of the transport function.
Since: 3.1.9
session: is a
gnutls_session_t
structure.recv_int: will hold the value for the pull function
send_int: will hold the value for the push function
Used to get the arguments of the transport functions (like PUSH and PULL). These should have been set using
gnutls_transport_set_int2()
.Since: 3.1.9
session: is a
gnutls_session_t
structure.Used to get the first argument of the transport function (like PUSH and PULL). This must have been set using
gnutls_transport_set_ptr()
.Returns: The first argument of the transport function.
session: is a
gnutls_session_t
structure.recv_ptr: will hold the value for the pull function
send_ptr: will hold the value for the push function
Used to get the arguments of the transport functions (like PUSH and PULL). These should have been set using
gnutls_transport_set_ptr2()
.
session: is a
gnutls_session_t
structure.err: error value to store in session-specific errno variable.
Store
err
in the session-specific errno variable. Useful values forerr
is EAGAIN and EINTR, other values are treated will be treated as real errors in the push/pull function.This function is useful in replacement push and pull functions set by
gnutls_transport_set_push_function()
andgnutls_transport_set_pull_function()
under Windows, where the replacements may not have access to the sameerrno
variable that is used by GnuTLS (e.g., the application is linked to msvcr71.dll and gnutls is linked to msvcrt.dll).
session: is a
gnutls_session_t
structure.errno_func: a callback function similar to
write()
This is the function where you set a function to retrieve errno after a failed push or pull operation.
errno_func
is of the form, int (*gnutls_errno_func)(gnutls_transport_ptr_t); and should return the errno.Since: 2.12.0
session: is a
gnutls_session_t
structure.i: is the value.
Used to set the first argument of the transport function (for push and pull callbacks) for berkeley style sockets.
Since: 3.1.9
session: is a
gnutls_session_t
structure.recv_int: is the value for the pull function
send_int: is the value for the push function
Used to set the first argument of the transport function (for push and pull callbacks), when using the berkeley style sockets. With this function you can set two different pointers for receiving and sending.
Since: 3.1.9
session: is a
gnutls_session_t
structure.ptr: is the value.
Used to set the first argument of the transport function (for push and pull callbacks). In berkeley style sockets this function will set the connection descriptor.
session: is a
gnutls_session_t
structure.recv_ptr: is the value for the pull function
send_ptr: is the value for the push function
Used to set the first argument of the transport function (for push and pull callbacks). In berkeley style sockets this function will set the connection descriptor. With this function you can use two different pointers for receiving and sending.
session: is a
gnutls_session_t
structure.pull_func: a callback function similar to
read()
This is the function where you set a function for gnutls to receive data. Normally, if you use berkeley style sockets, do not need to use this function since the default recv(2) will probably be ok. The callback should return 0 on connection termination, a positive number indicating the number of bytes received, and -1 on error.
gnutls_pull_func
is of the form, ssize_t (*gnutls_pull_func)(gnutls_transport_ptr_t, void*, size_t);
session: is a
gnutls_session_t
structure.func: a callback function
This is the function where you set a function for gnutls to know whether data are ready to be received. It should wait for data a given time frame in milliseconds. The callback should return 0 on timeout, a positive number if data can be received, and -1 on error. You'll need to override this function if
select()
is not suitable for the provided transport calls.As with
select()
, if the timeout value is zero the callback should return zero if no data are immediately available.
gnutls_pull_timeout_func
is of the form, int (*gnutls_pull_timeout_func)(gnutls_transport_ptr_t, unsigned int ms);Since: 3.0
session: is a
gnutls_session_t
structure.push_func: a callback function similar to
write()
This is the function where you set a push function for gnutls to use in order to send data. If you are going to use berkeley style sockets, you do not need to use this function since the default send(2) will probably be ok. Otherwise you should specify this function for gnutls to be able to send data. The callback should return a positive number indicating the bytes sent, and -1 on error.
push_func
is of the form, ssize_t (*gnutls_push_func)(gnutls_transport_ptr_t, const void*, size_t);
session: is a
gnutls_session_t
structure.vec_func: a callback function similar to
writev()
Using this function you can override the default writev(2) function for gnutls to send data. Setting this callback instead of
gnutls_transport_set_push_function()
is recommended since it introduces less overhead in the TLS handshake process.
vec_func
is of the form, ssize_t (*gnutls_vec_push_func) (gnutls_transport_ptr_t, const giovec_t * iov, int iovcnt);Since: 2.12.0
url: A PKCS 11 url
Check whether url is supported. Depending on the system libraries GnuTLS may support pkcs11 or tpmkey URLs.
Returns: return non-zero if the given URL is supported, and zero if it is not known.
Since: 3.1.0
db_name: A file specifying the stored keys (use NULL for the default)
tdb: A storage structure or NULL to use the default
host: The peer's name
service: non-NULL if this key is specific to a service (e.g. http)
cert_type: The type of the certificate
cert: The raw (der) data of the certificate
flags: should be 0.
This function will try to verify the provided (raw or DER-encoded) certificate using a list of stored public keys. The
service
field if non-NULL should be a port number.The
retrieve
variable if non-null specifies a custom backend for the retrieval of entries. If it is NULL then the default file backend will be used. In POSIX-like systems the file backend uses the $HOME/.gnutls/known_hosts file.Note that if the custom storage backend is provided the retrieval function should return
GNUTLS_E_CERTIFICATE_KEY_MISMATCH
if the host/service pair is found but key doesn't match,GNUTLS_E_NO_CERTIFICATE_FOUND
if no such host/service with the given key is found, and 0 if it was found. The storage function should return 0 on success.Returns: If no associated public key is found then
GNUTLS_E_NO_CERTIFICATE_FOUND
will be returned. If a key is found but does not matchGNUTLS_E_CERTIFICATE_KEY_MISMATCH
is returned. On success,GNUTLS_E_SUCCESS
(0) is returned, or a negative error value on other errors.Since: 3.0.13
The prototypes for the following functions lie in gnutls/dtls.h.
key: is a random key to be used at cookie generation
client_data: contains data identifying the client (i.e. address)
client_data_size: The size of client's data
prestate: The previous cookie returned by
gnutls_dtls_cookie_verify()
ptr: A transport pointer to be used by
push_func
push_func: A function that will be used to reply
This function can be used to prevent denial of service attacks to a DTLS server by requiring the client to reply using a cookie sent by this function. That way it can be ensured that a client we allocated resources for (i.e.
gnutls_session_t
) is the one that the original incoming packet was originated from.This function must be called at the first incoming packet, prior to allocating any resources and must be succeeded by
gnutls_dtls_cookie_verify()
.Returns: the number of bytes sent, or a negative error code.
Since: 3.0
key: is a random key to be used at cookie generation
client_data: contains data identifying the client (i.e. address)
client_data_size: The size of client's data
_msg: An incoming message that initiates a connection.
msg_size: The size of the message.
prestate: The cookie of this client.
This function will verify the received message for a valid cookie. If a valid cookie is returned then it should be associated with the session using
gnutls_dtls_prestate_set()
;This function must be called after
gnutls_dtls_cookie_send()
.Returns:
GNUTLS_E_SUCCESS
(0) on success, or a negative error code.Since: 3.0
session: is a
gnutls_session_t
structure.This function will return the actual maximum transfer unit for application data. I.e. DTLS headers are subtracted from the actual MTU which is set using
gnutls_dtls_set_mtu()
.Returns: the maximum allowed transfer unit.
Since: 3.0
session: is a
gnutls_session_t
structure.This function will return the MTU size as set with
gnutls_dtls_set_mtu()
. This is not the actual MTU of data you can transmit. Usegnutls_dtls_get_data_mtu()
for that reason.Returns: the set maximum transfer unit.
Since: 3.0
session: is a
gnutls_session_t
structure.This function will return the milliseconds remaining for a retransmission of the previously sent handshake message. This function is useful when DTLS is used in non-blocking mode, to estimate when to call
gnutls_handshake()
if no packets have been received.Returns: the remaining time in milliseconds.
Since: 3.0
session: a new session
prestate: contains the client's prestate
This function will associate the prestate acquired by the cookie authentication with the client, with the newly established session.
This functions must be called after a successful
gnutls_dtls_cookie_verify()
and should be succeeded by the actual DTLS handshake usinggnutls_handshake()
.Since: 3.0
session: is a
gnutls_session_t
structure.mtu: The maximum unencrypted transfer unit of the session
This function will set the maximum size of the *unencrypted* records which will be sent over a DTLS session. It is equivalent to calculating the DTLS packet overhead with the current encryption parameters, and calling
gnutls_dtls_set_mtu()
with that value. In particular, this means that you may need to call this function again after any negotiation or renegotiation, in order to ensure that the MTU is still sufficient to account for the new protocol overhead.In most cases you only need to call
gnutls_dtls_set_mtu()
with the maximum MTU of your transport layer.Returns:
GNUTLS_E_SUCCESS
(0) on success, or a negative error code.Since: 3.1
session: is a
gnutls_session_t
structure.mtu: The maximum transfer unit of the transport
This function will set the maximum transfer unit of the transport that DTLS packets are sent over. Note that this should exclude the IP (or IPv6) and UDP headers. So for DTLS over IPv6 on an Ethenet device with MTU 1500, the DTLS MTU set with this function would be 1500 - 40 (IPV6 header) - 8 (UDP header) = 1452.
Since: 3.0
session: is a
gnutls_session_t
structure.retrans_timeout: The time at which a retransmission will occur in milliseconds
total_timeout: The time at which the connection will be aborted, in milliseconds.
This function will set the timeouts required for the DTLS handshake protocol. The retransmission timeout is the time after which a message from the peer is not received, the previous messages will be retransmitted. The total timeout is the time after which the handshake will be aborted with
GNUTLS_E_TIMEDOUT
.The DTLS protocol recommends the values of 1 sec and 60 seconds respectively.
If the retransmission timeout is zero then the handshake will operate in a non-blocking way, i.e., return
GNUTLS_E_AGAIN
.To disable retransmissions set a
retrans_timeout
larger than thetotal_timeout
.Since: 3.0
session: is a
gnutls_session_t
structure.Returns the number of discarded packets in a DTLS connection.
Returns: The number of discarded packets.
Since: 3.0
The following functions are to be used for X.509 certificate handling. Their prototypes lie in gnutls/x509.h.
res: is a
gnutls_certificate_credentials_t
structure.tlist: is a
gnutls_x509_trust_list_t
structureflags: must be zero
This function sets a trust list in the gnutls_certificate_credentials_t structure.
Note that the
tlist
will become part of the credentials structure and must not be deallocated. It will be automatically deallocated when theres
structure is deinitialized.Returns:
GNUTLS_E_SUCCESS
(0) on success, or a negative error code.Since: 3.2.2
pkcs7: The structure to be initialized
This function will deinitialize a PKCS7 structure.
pkcs7: should contain a
gnutls_pkcs7_t
structureindx: the index of the crl to delete
This function will delete a crl from a PKCS7 or RFC2630 crl set. Index starts from 0. Returns 0 on success.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
pkcs7: should contain a gnutls_pkcs7_t structure
indx: the index of the certificate to delete
This function will delete a certificate from a PKCS7 or RFC2630 certificate set. Index starts from 0. Returns 0 on success.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
pkcs7: Holds the pkcs7 structure
format: the format of output params. One of PEM or DER.
output_data: will contain a structure PEM or DER encoded
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will export the pkcs7 structure to DER or PEM format.
If the buffer provided is not long enough to hold the output, then *
output_data_size
is updated andGNUTLS_E_SHORT_MEMORY_BUFFER
will be returned.If the structure is PEM encoded, it will have a header of "BEGIN PKCS7".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
pkcs7: Holds the pkcs7 structure
format: the format of output params. One of PEM or DER.
out: will contain a structure PEM or DER encoded
This function will export the pkcs7 structure to DER or PEM format.
The output buffer is allocated using
gnutls_malloc()
.If the structure is PEM encoded, it will have a header of "BEGIN PKCS7".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.3
pkcs7: should contain a gnutls_pkcs7_t structure
This function will return the number of certifcates in the PKCS7 or RFC2630 crl set.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
pkcs7: should contain a
gnutls_pkcs7_t
structureindx: contains the index of the crl to extract
crl: the contents of the crl will be copied there (may be null)
crl_size: should hold the size of the crl
This function will return a crl of the PKCS7 or RFC2630 crl set.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value. If the provided buffer is not long enough, thencrl_size
is updated andGNUTLS_E_SHORT_MEMORY_BUFFER
is returned. After the last crl has been readGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.
pkcs7: should contain a
gnutls_pkcs7_t
structureThis function will return the number of certifcates in the PKCS7 or RFC2630 certificate set.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
pkcs7: should contain a gnutls_pkcs7_t structure
indx: contains the index of the certificate to extract
certificate: the contents of the certificate will be copied there (may be null)
certificate_size: should hold the size of the certificate
This function will return a certificate of the PKCS7 or RFC2630 certificate set.
After the last certificate has been read
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value. If the provided buffer is not long enough, thencertificate_size
is updated andGNUTLS_E_SHORT_MEMORY_BUFFER
is returned.
pkcs7: The structure to store the parsed PKCS7.
data: The DER or PEM encoded PKCS7.
format: One of DER or PEM
This function will convert the given DER or PEM encoded PKCS7 to the native
gnutls_pkcs7_t
format. The output will be stored inpkcs7
.If the PKCS7 is PEM encoded it should have a header of "PKCS7".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
pkcs7: The structure to be initialized
This function will initialize a PKCS7 structure. PKCS7 structures usually contain lists of X.509 Certificates and X.509 Certificate revocation lists.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
pkcs7: should contain a
gnutls_pkcs7_t
structurecrl: the DER encoded crl to be added
This function will add a parsed CRL to the PKCS7 or RFC2630 crl set.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
pkcs7: should contain a
gnutls_pkcs7_t
structurecrl: the DER encoded crl to be added
This function will add a crl to the PKCS7 or RFC2630 crl set.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
pkcs7: should contain a
gnutls_pkcs7_t
structurecrt: the certificate to be copied.
This function will add a parsed certificate to the PKCS7 or RFC2630 certificate set. This is a wrapper function over
gnutls_pkcs7_set_crt_raw()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
pkcs7: should contain a
gnutls_pkcs7_t
structurecrt: the DER encoded certificate to be added
This function will add a certificate to the PKCS7 or RFC2630 certificate set.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
sans: The alternative names structure
This function will deinitialize an alternative names structure.
Since: 3.3.0
sans: The alternative names structure
seq: The index of the name to get
san_type: Will hold the type of the name (of
gnutls_subject_alt_names_t
)san: The alternative name data (should be treated as constant)
othername_oid: The object identifier if
san_type
isGNUTLS_SAN_OTHERNAME
(should be treated as constant)This function will return a specific alternative name as stored in the
sans
structure. The returned values should be treated as constant and valid for the lifetime ofsans
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the index is out of bounds, otherwise a negative error value.Since: 3.3.0
sans: The alternative names structure
This function will initialize an alternative names structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
sans: The alternative names structure
san_type: The type of the name (of
gnutls_subject_alt_names_t
)san: The alternative name data
othername_oid: The object identifier if
san_type
isGNUTLS_SAN_OTHERNAME
This function will store the specified alternative name in the
sans
structure.Returns: On success,
GNUTLS_E_SUCCESS
(0), otherwise a negative error value.Since: 3.3.0
aia: The authority info access structure
This function will deinitialize a CRL distribution points structure.
Since: 3.3.0
aia: The authority info access structure
seq: specifies the sequence number of the access descriptor (0 for the first one, 1 for the second etc.)
oid: the type of available data; to be treated as constant.
san_type: Will hold the type of the name of
gnutls_subject_alt_names_t
(may be null).san: the access location name; to be treated as constant (may be null).
This function reads from the Authority Information Access structure.
The
seq
input parameter is used to indicate which member of the sequence the caller is interested in. The first member is 0, the second member 1 and so on. When theseq
value is out of bounds,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.Typically
oid
isGNUTLS_OID_AD_CAISSUERS
orGNUTLS_OID_AD_OCSP
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
aia: The authority info access structure
This function will initialize a CRL distribution points structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
aia: The authority info access structure
oid: the type of data.
san_type: The type of the name (of
gnutls_subject_alt_names_t
)san: The alternative name data
This function will store the specified alternative name in the
aia
structure.Typically the value for
oid
should beGNUTLS_OID_AD_OCSP
, orGNUTLS_OID_AD_CAISSUERS
.Returns: On success,
GNUTLS_E_SUCCESS
(0), otherwise a negative error value.Since: 3.3.0
aki: The authority key identifier structure
This function will deinitialize an authority key identifier structure.
Since: 3.3.0
aki: The authority key ID structure
seq: The index of the name to get
san_type: Will hold the type of the name (of
gnutls_subject_alt_names_t
)san: The alternative name data
othername_oid: The object identifier if
san_type
isGNUTLS_SAN_OTHERNAME
serial: The authorityCertSerialNumber number
This function will return a specific authorityCertIssuer name as stored in the
aki
structure, as well as the authorityCertSerialNumber. All the returned values should be treated as constant, and may be set toNULL
when are not required.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the index is out of bounds, otherwise a negative error value.Since: 3.3.0
aki: The authority key ID structure
id: Will hold the identifier
This function will return the key identifier as stored in the
aki
structure. The identifier should be treated as constant.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the index is out of bounds, otherwise a negative error value.Since: 3.3.0
aki: The authority key ID structure
This function will initialize an authority key ID structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
aki: The authority key ID structure
san_type: the type of the name (of
gnutls_subject_alt_names_t
), may be nullsan: The alternative name data
othername_oid: The object identifier if
san_type
isGNUTLS_SAN_OTHERNAME
serial: The authorityCertSerialNumber number (may be null)
This function will set the authorityCertIssuer name and the authorityCertSerialNumber to be stored in the
aki
structure. When storing multiple names, the serial should be set on the first call, and subsequent calls should use aNULL
serial.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
aki: The authority key ID structure
id: the key identifier
This function will set the keyIdentifier to be stored in the
aki
structure.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
crl: is the CRL to be checked
issuer: is the certificate of a possible issuer
This function will check if the given CRL was issued by the given issuer certificate.
Returns: true (1) if the given CRL was issued by the given issuer, and false (0) if not.
crl: The structure to be deinitialized
This function will deinitialize a CRL structure.
cdp: The CRL distribution points structure
This function will deinitialize a CRL distribution points structure.
Since: 3.3.0
cdp: The CRL distribution points structure
seq: specifies the sequence number of the distribution point (0 for the first one, 1 for the second etc.)
type: The name type of the corresponding name (gnutls_x509_subject_alt_name_t)
san: The distribution point names (to be treated as constant)
reasons: Revocation reasons. An ORed sequence of flags from
gnutls_x509_crl_reason_flags_t
.This function retrieves the individual CRL distribution points (2.5.29.31), contained in provided structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the index is out of bounds, otherwise a negative error value.
cdp: The CRL distribution points structure
This function will initialize a CRL distribution points structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
cdp: The CRL distribution points structure
type: The type of the name (of
gnutls_subject_alt_names_t
)san: The point name data
reasons: Revocation reasons. An ORed sequence of flags from
gnutls_x509_crl_reason_flags_t
.This function will store the specified CRL distibution point value the
cdp
structure.Returns: On success,
GNUTLS_E_SUCCESS
(0), otherwise a negative error value.Since: 3.3.0
crl: Holds the revocation list
format: the format of output params. One of PEM or DER.
output_data: will contain a private key PEM or DER encoded
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will export the revocation list to DER or PEM format.
If the buffer provided is not long enough to hold the output, then
GNUTLS_E_SHORT_MEMORY_BUFFER
will be returned.If the structure is PEM encoded, it will have a header of "BEGIN X509 CRL".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crl: Holds the revocation list
format: the format of output params. One of PEM or DER.
out: will contain a private key PEM or DER encoded
This function will export the revocation list to DER or PEM format.
The output buffer is allocated using
gnutls_malloc()
.If the structure is PEM encoded, it will have a header of "BEGIN X509 CRL".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since 3.1.3
crl: should contain a
gnutls_x509_crl_t
structureseq: specifies the sequence number of the alt name (0 for the first one, 1 for the second etc.)
alt: is the place where the alternative name will be copied to
alt_size: holds the size of alt.
alt_type: holds the type of the alternative name (one of gnutls_x509_subject_alt_name_t).
serial: buffer to store the serial number (may be null)
serial_size: Holds the size of the serial field (may be null)
critical: will be non-zero if the extension is marked as critical (may be null)
This function will return the X.509 authority key identifier when stored as a general name (authorityCertIssuer) and serial number.
Because more than one general names might be stored
seq
can be used as a counter to request them all untilGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.Returns: Returns 0 on success, or an error code.
Since: 3.0
crl: should contain a
gnutls_x509_crl_t
structureid: The place where the identifier will be copied
id_size: Holds the size of the result field.
critical: will be non-zero if the extension is marked as critical (may be null)
This function will return the CRL authority's key identifier. This is obtained by the X.509 Authority Key identifier extension field (2.5.29.35). Note that this function only returns the keyIdentifier field of the extension and
GNUTLS_E_X509_UNSUPPORTED_EXTENSION
, if the extension contains the name and serial number of the certificate. In that casegnutls_x509_crl_get_authority_key_gn_serial()
may be used.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code in case of an error.Since: 2.8.0
crl: should contain a
gnutls_x509_crl_t
structureThis function will return the number of revoked certificates in the given CRL.
Returns: number of certificates, a negative error code on failure.
crl: should contain a
gnutls_x509_crl_t
structureindx: the index of the certificate to extract (starting from 0)
serial: where the serial number will be copied
serial_size: initially holds the size of serial
t: if non null, will hold the time this certificate was revoked
This function will retrieve the serial number of the specified, by the index, revoked certificate.
Note that this function will have performance issues in large sequences of revoked certificates. In that case use
gnutls_x509_crl_iter_crt_serial()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crl: should contain a gnutls_x509_crl_t structure
indx: Specifies which DN OID to send. Use (0) to get the first one.
oid: a pointer to a structure to hold the name (may be null)
sizeof_oid: initially holds the size of 'oid'
This function will extract the requested OID of the name of the CRL issuer, specified by the given index.
If oid is null then only the size will be filled.
Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the provided buffer is not long enough, and in that case the sizeof_oid will be updated with the required size. On success 0 is returned.
crl: should contain a
gnutls_x509_crl_t
structureindx: Specifies which extension OID to send. Use (0) to get the first one.
data: a pointer to a structure to hold the data (may be null)
sizeof_data: initially holds the size of
oid
This function will return the requested extension data in the CRL. The extension data will be stored as a string in the provided buffer.
Use
gnutls_x509_crl_get_extension_info()
to extract the OID and critical flag. Usegnutls_x509_crl_get_extension_info()
instead, if you want to get data indexed by the extension OID rather than sequence.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code in case of an error. If your have reached the last extension availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Since: 2.8.0
crl: should contain a
gnutls_x509_crl_t
structureindx: Specifies which extension OID to read. Use (0) to get the first one.
data: will contain the extension DER-encoded data
This function will return the requested by the index extension data in the certificate revocation list. The extension data will be allocated using
gnutls_malloc()
.Use
gnutls_x509_crt_get_extension_info()
to extract the OID.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned. If you have reached the last extension availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.
crl: should contain a
gnutls_x509_crl_t
structureindx: Specifies which extension OID to send, use (0) to get the first one.
oid: a pointer to a structure to hold the OID
sizeof_oid: initially holds the maximum size of
oid
, on return holds actual size ofoid
.critical: output variable with critical flag, may be NULL.
This function will return the requested extension OID in the CRL, and the critical flag for it. The extension OID will be stored as a string in the provided buffer. Use
gnutls_x509_crl_get_extension_data()
to extract the data.If the buffer provided is not long enough to hold the output, then *
sizeof_oid
is updated andGNUTLS_E_SHORT_MEMORY_BUFFER
will be returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code in case of an error. If your have reached the last extension availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Since: 2.8.0
crl: should contain a
gnutls_x509_crl_t
structureindx: Specifies which extension OID to send, use (0) to get the first one.
oid: a pointer to a structure to hold the OID (may be null)
sizeof_oid: initially holds the size of
oid
This function will return the requested extension OID in the CRL. The extension OID will be stored as a string in the provided buffer.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code in case of an error. If your have reached the last extension availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Since: 2.8.0
crl: should contain a gnutls_x509_crl_t structure
buf: a pointer to a structure to hold the peer's name (may be null)
sizeof_buf: initially holds the size of
buf
This function will copy the name of the CRL issuer in the provided buffer. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The output string will be ASCII or UTF-8 encoded, depending on the certificate data.
If buf is
NULL
then only the size will be filled.Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the provided buffer is not long enough, and in that case the sizeof_buf will be updated with the required size, and 0 on success.
crl: should contain a
gnutls_x509_crl_t
structuredn: a pointer to a structure to hold the name
This function will allocate buffer and copy the name of the CRL issuer. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The output string will be ASCII or UTF-8 encoded, depending on the certificate data.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.10
crl: should contain a gnutls_x509_crl_t structure
oid: holds an Object Identified in null terminated string
indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use (0) to get the first one.
raw_flag: If non-zero returns the raw DER data of the DN part.
buf: a pointer to a structure to hold the peer's name (may be null)
sizeof_buf: initially holds the size of
buf
This function will extract the part of the name of the CRL issuer specified by the given OID. The output will be encoded as described in RFC4514. The output string will be ASCII or UTF-8 encoded, depending on the certificate data.
Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is (0), this function will only return known OIDs as text. Other OIDs will be DER encoded, as described in RFC4514 – in hex format with a '#' prefix. You can check about known OIDs using
gnutls_x509_dn_oid_known()
.If buf is null then only the size will be filled.
Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the provided buffer is not long enough, and in that case the sizeof_buf will be updated with the required size, and 0 on success.
crl: should contain a
gnutls_x509_crl_t
structureThis function will return the time the next CRL will be issued. This field is optional in a CRL so it might be normal to get an error instead.
Returns: when the next CRL will be issued, or (time_t)-1 on error.
crl: should contain a
gnutls_x509_crl_t
structureret: The place where the number will be copied
ret_size: Holds the size of the result field.
critical: will be non-zero if the extension is marked as critical (may be null)
This function will return the CRL number extension. This is obtained by the CRL Number extension field (2.5.29.20).
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code in case of an error.Since: 2.8.0
crl: should contain a gnutls_x509_crl_t structure
dn: will hold the starting point of the DN
This function will return a pointer to the DER encoded DN structure and the length.
Returns: a negative error code on error, and (0) on success.
Since: 2.12.0
crl: should contain a gnutls_x509_crl_t structure
sig: a pointer where the signature part will be copied (may be null).
sizeof_sig: initially holds the size of
sig
This function will extract the signature field of a CRL.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crl: should contain a
gnutls_x509_crl_t
structureThis function will return a value of the
gnutls_sign_algorithm_t
enumeration that is the signature algorithm.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crl: should contain a
gnutls_x509_crl_t
structureThis function will return the time this CRL was issued.
Returns: when the CRL was issued, or (time_t)-1 on error.
crl: should contain a
gnutls_x509_crl_t
structureThis function will return the version of the specified CRL.
Returns: The version number, or a negative error code on error.
crl: The structure to store the parsed CRL.
data: The DER or PEM encoded CRL.
format: One of DER or PEM
This function will convert the given DER or PEM encoded CRL to the native
gnutls_x509_crl_t
format. The output will be stored in 'crl'.If the CRL is PEM encoded it should have a header of "X509 CRL".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crl: The structure to be initialized
This function will initialize a CRL structure. CRL stands for Certificate Revocation List. A revocation list usually contains lists of certificate serial numbers that have been revoked by an Authority. The revocation lists are always signed with the authority's private key.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crl: should contain a
gnutls_x509_crl_t
structureiter: A pointer to an iterator (initially the iterator should be
NULL
)serial: where the serial number will be copied
serial_size: initially holds the size of serial
t: if non null, will hold the time this certificate was revoked
This function performs the same as
gnutls_x509_crl_get_crt_serial()
, but reads sequentially and keeps state in the iterator between calls. That allows it to provide better performance in sequences with many elements (50000+).When past the last element is accessed
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned and the iterator is reset.After use, the iterator must be deinitialized using
gnutls_x509_crl_iter_deinit()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
iter: The iterator structure to be deinitialized
This function will deinitialize an iterator structure.
crls: The structures to store the parsed CRLs. Must not be initialized.
crl_max: Initially must hold the maximum number of crls. It will be updated with the number of crls available.
data: The PEM encoded CRLs
format: One of DER or PEM.
flags: must be (0) or an OR'd sequence of gnutls_certificate_import_flags.
This function will convert the given PEM encoded CRL list to the native gnutls_x509_crl_t format. The output will be stored in
crls
. They will be automatically initialized.If the Certificate is PEM encoded it should have a header of "X509 CRL".
Returns: the number of certificates read or a negative error value.
Since: 3.0
crls: The structures to store the parsed crl list. Must not be initialized.
size: It will contain the size of the list.
data: The PEM encoded CRL.
format: One of DER or PEM.
flags: must be (0) or an OR'd sequence of gnutls_certificate_import_flags.
This function will convert the given PEM encoded CRL list to the native gnutls_x509_crl_t format. The output will be stored in
crls
. They will be automatically initialized.If the Certificate is PEM encoded it should have a header of "X509 CRL".
Returns: the number of certificates read or a negative error value.
Since: 3.0
crl: The structure to be printed
format: Indicate the format to use
out: Newly allocated datum with null terminated string.
This function will pretty print a X.509 certificate revocation list, suitable for display to a human.
The output
out
needs to be deallocated usinggnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crl: a CRL of type
gnutls_x509_crl_t
id: The key ID
id_size: Holds the size of the serial field.
This function will set the CRL's authority key ID extension. Only the keyIdentifier field can be set with this function. This may be used by an authority that holds multiple private keys, to distinguish the used key.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.8.0
crl: should contain a gnutls_x509_crl_t structure
crt: a certificate of type
gnutls_x509_crt_t
with the revoked certificaterevocation_time: The time this certificate was revoked
This function will set a revoked certificate's serial number to the CRL.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crl: should contain a gnutls_x509_crl_t structure
serial: The revoked certificate's serial number
serial_size: Holds the size of the serial field.
revocation_time: The time this certificate was revoked
This function will set a revoked certificate's serial number to the CRL.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crl: should contain a gnutls_x509_crl_t structure
exp_time: The actual time
This function will set the time this CRL will be updated.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crl: a CRL of type
gnutls_x509_crl_t
nr: The CRL number
nr_size: Holds the size of the nr field.
This function will set the CRL's number extension. This is to be used as a unique and monotonic number assigned to the CRL by the authority.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.8.0
crl: should contain a gnutls_x509_crl_t structure
act_time: The actual time
This function will set the time this CRL was issued.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crl: should contain a gnutls_x509_crl_t structure
version: holds the version number. For CRLv1 crls must be 1.
This function will set the version of the CRL. This must be one for CRL version 1, and so on. The CRLs generated by gnutls should have a version number of 2.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crl: should contain a gnutls_x509_crl_t structure
issuer: is the certificate of the certificate issuer
issuer_key: holds the issuer's private key
dig: The message digest to use. GNUTLS_DIG_SHA1 is the safe choice unless you know what you're doing.
flags: must be 0
This function will sign the CRL with the issuer's private key, and will copy the issuer's information into the CRL.
This must be the last step in a certificate CRL since all the previously set parameters are now signed.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crl: is the crl to be verified
trusted_cas: is a certificate list that is considered to be trusted one
tcas_size: holds the number of CA certificates in CA_list
flags: Flags that may be used to change the verification algorithm. Use OR of the gnutls_certificate_verify_flags enumerations.
verify: will hold the crl verification output.
This function will try to verify the given crl and return its verification status. See
gnutls_x509_crt_list_verify()
for a detailed description of return values. Note that since GnuTLS 3.1.4 this function includes the time checks.Note that value in
verify
is set only when the return value of this function is success (i.e, failure to trust a CRL a certificate does not imply a negative return value).Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crq: The structure to be initialized
This function will deinitialize a PKCS
10
certificate request structure.
crq: should contain a
gnutls_x509_crq_t
structureformat: the format of output params. One of PEM or DER.
output_data: will contain a certificate request PEM or DER encoded
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will export the certificate request to a PEM or DER encoded PKCS10 structure.
If the buffer provided is not long enough to hold the output, then
GNUTLS_E_SHORT_MEMORY_BUFFER
will be returned and *output_data_size
will be updated.If the structure is PEM encoded, it will have a header of "BEGIN NEW CERTIFICATE REQUEST".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crq: should contain a
gnutls_x509_crq_t
structureformat: the format of output params. One of PEM or DER.
out: will contain a certificate request PEM or DER encoded
This function will export the certificate request to a PEM or DER encoded PKCS10 structure.
The output buffer is allocated using
gnutls_malloc()
.If the structure is PEM encoded, it will have a header of "BEGIN NEW CERTIFICATE REQUEST".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since 3.1.3
crq: should contain a
gnutls_x509_crq_t
structureoid: holds an Object Identifier in null-terminated string
indx: In case multiple same OIDs exist in the attribute list, this specifies which to get, use (0) to get the first one
buf: a pointer to a structure to hold the attribute data (may be
NULL
)buf_size: initially holds the size of
buf
This function will return the attribute in the certificate request specified by the given Object ID. The attribute will be DER encoded.
Attributes in a certificate request is an optional set of data appended to the request. Their interpretation depends on the CA policy.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crq: should contain a
gnutls_x509_crq_t
structureindx: Specifies which attribute number to get. Use (0) to get the first one.
data: a pointer to a structure to hold the data (may be null)
sizeof_data: initially holds the size of
oid
This function will return the requested attribute data in the certificate request. The attribute data will be stored as a string in the provided buffer.
Use
gnutls_x509_crq_get_attribute_info()
to extract the OID. Usegnutls_x509_crq_get_attribute_by_oid()
instead, if you want to get data indexed by the attribute OID rather than sequence.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code in case of an error. If your have reached the last extension availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Since: 2.8.0
crq: should contain a
gnutls_x509_crq_t
structureindx: Specifies which attribute number to get. Use (0) to get the first one.
oid: a pointer to a structure to hold the OID
sizeof_oid: initially holds the maximum size of
oid
, on return holds actual size ofoid
.This function will return the requested attribute OID in the certificate, and the critical flag for it. The attribute OID will be stored as a string in the provided buffer. Use
gnutls_x509_crq_get_attribute_data()
to extract the data.If the buffer provided is not long enough to hold the output, then *
sizeof_oid
is updated andGNUTLS_E_SHORT_MEMORY_BUFFER
will be returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code in case of an error. If your have reached the last extension availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Since: 2.8.0
crq: should contain a
gnutls_x509_crq_t
structurecritical: will be non-zero if the extension is marked as critical
ca: pointer to output integer indicating CA status, may be NULL, value is 1 if the certificate CA flag is set, 0 otherwise.
pathlen: pointer to output integer indicating path length (may be NULL), non-negative error codes indicate a present pathLenConstraint field and the actual value, -1 indicate that the field is absent.
This function will read the certificate's basic constraints, and return the certificates CA status. It reads the basicConstraints X.509 extension (2.5.29.19).
Returns: If the certificate is a CA a positive value will be returned, or (0) if the certificate does not have CA flag set. A negative error code may be returned in case of errors. If the certificate does not contain the basicConstraints extension
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Since: 2.8.0
crq: should contain a
gnutls_x509_crq_t
structurepass: will hold a (0)-terminated password string
pass_size: Initially holds the size of
pass
.This function will return the challenge password in the request. The challenge password is intended to be used for requesting a revocation of the certificate.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crq: should contain a
gnutls_x509_crq_t
structurebuf: a pointer to a structure to hold the name (may be
NULL
)buf_size: initially holds the size of
buf
This function will copy the name of the Certificate request subject to the provided buffer. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC 2253. The output string
buf
will be ASCII or UTF-8 encoded, depending on the certificate data.Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the provided buffer is not long enough, and in that case the *buf_size
will be updated with the required size. On success 0 is returned.
crq: should contain a
gnutls_x509_crq_t
structuredn: a pointer to a structure to hold the name
This function will allocate buffer and copy the name of the Certificate request. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The output string will be ASCII or UTF-8 encoded, depending on the certificate data.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value. and a negative error code on error.Since: 3.1.10
crq: should contain a gnutls_x509_crq_t structure
oid: holds an Object Identifier in a null terminated string
indx: In case multiple same OIDs exist in the RDN, this specifies which to get. Use (0) to get the first one.
raw_flag: If non-zero returns the raw DER data of the DN part.
buf: a pointer to a structure to hold the name (may be
NULL
)buf_size: initially holds the size of
buf
This function will extract the part of the name of the Certificate request subject, specified by the given OID. The output will be encoded as described in RFC2253. The output string will be ASCII or UTF-8 encoded, depending on the certificate data.
Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is (0), this function will only return known OIDs as text. Other OIDs will be DER encoded, as described in RFC2253 – in hex format with a '\#' prefix. You can check about known OIDs using
gnutls_x509_dn_oid_known()
.Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the provided buffer is not long enough, and in that case the *buf_size
will be updated with the required size. On success 0 is returned.
crq: should contain a gnutls_x509_crq_t structure
indx: Specifies which DN OID to get. Use (0) to get the first one.
oid: a pointer to a structure to hold the name (may be
NULL
)sizeof_oid: initially holds the size of
oid
This function will extract the requested OID of the name of the certificate request subject, specified by the given index.
Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the provided buffer is not long enough, and in that case the *sizeof_oid
will be updated with the required size. On success 0 is returned.
crq: should contain a
gnutls_x509_crq_t
structureoid: holds an Object Identifier in a null terminated string
indx: In case multiple same OIDs exist in the extensions, this specifies which to get. Use (0) to get the first one.
buf: a pointer to a structure to hold the name (may be null)
buf_size: initially holds the size of
buf
critical: will be non-zero if the extension is marked as critical
This function will return the extension specified by the OID in the certificate. The extensions will be returned as binary data DER encoded, in the provided buffer.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code in case of an error. If the certificate does not contain the specified extensionGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Since: 2.8.0
crq: should contain a
gnutls_x509_crq_t
structureoid: holds an Object Identifier in a null terminated string
indx: In case multiple same OIDs exist in the extensions, this specifies which to get. Use (0) to get the first one.
output: will hold the allocated extension data
critical: will be non-zero if the extension is marked as critical
This function will return the extension specified by the OID in the certificate. The extensions will be returned as binary data DER encoded, in the provided buffer.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code in case of an error. If the certificate does not contain the specified extensionGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Since: 3.3.8
crq: should contain a
gnutls_x509_crq_t
structureindx: Specifies which extension number to get. Use (0) to get the first one.
data: a pointer to a structure to hold the data (may be null)
sizeof_data: initially holds the size of
oid
This function will return the requested extension data in the certificate. The extension data will be stored as a string in the provided buffer.
Use
gnutls_x509_crq_get_extension_info()
to extract the OID and critical flag. Usegnutls_x509_crq_get_extension_by_oid()
instead, if you want to get data indexed by the extension OID rather than sequence.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code in case of an error. If your have reached the last extension availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Since: 2.8.0
crq: should contain a
gnutls_x509_crq_t
structureindx: Specifies which extension OID to read. Use (0) to get the first one.
data: will contain the extension DER-encoded data
This function will return the requested extension data in the certificate request. The extension data will be allocated using
gnutls_malloc()
.Use
gnutls_x509_crq_get_extension_info()
to extract the OID.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned. If you have reached the last extension availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Since: 3.3.0
crq: should contain a
gnutls_x509_crq_t
structureindx: Specifies which extension number to get. Use (0) to get the first one.
oid: a pointer to a structure to hold the OID
sizeof_oid: initially holds the maximum size of
oid
, on return holds actual size ofoid
.critical: output variable with critical flag, may be NULL.
This function will return the requested extension OID in the certificate, and the critical flag for it. The extension OID will be stored as a string in the provided buffer. Use
gnutls_x509_crq_get_extension_data()
to extract the data.If the buffer provided is not long enough to hold the output, then *
sizeof_oid
is updated andGNUTLS_E_SHORT_MEMORY_BUFFER
will be returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code in case of an error. If your have reached the last extension availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Since: 2.8.0
crq: a certificate of type
gnutls_x509_crq_t
flags: should be 0 for now
output_data: will contain the key ID
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will return a unique ID that depends on the public key parameters. This ID can be used in checking whether a certificate corresponds to the given private key.
If the buffer provided is not long enough to hold the output, then *
output_data_size
is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned. The output will normally be a SHA-1 hash output, which is 20 bytes.Returns: In case of failure a negative error code will be returned, and 0 on success.
Since: 2.8.0
crq: should contain a
gnutls_x509_crq_t
structureindx: This specifies which OID to return, use (0) to get the first one
oid: a pointer to a buffer to hold the OID (may be
NULL
)sizeof_oid: initially holds the size of
oid
critical: output variable with critical flag, may be
NULL
.This function will extract the key purpose OIDs of the Certificate specified by the given index. These are stored in the Extended Key Usage extension (2.5.29.37). See the GNUTLS_KP_* definitions for human readable names.
Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the provided buffer is not long enough, and in that case the *sizeof_oid
will be updated with the required size. On success 0 is returned.Since: 2.8.0
crq: Holds the certificate
m: will hold the modulus
e: will hold the public exponent
This function will export the RSA public key's parameters found in the given structure. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.8.0
crq: should contain a
gnutls_x509_crq_t
structurekey_usage: where the key usage bits will be stored
critical: will be non-zero if the extension is marked as critical
This function will return certificate's key usage, by reading the keyUsage X.509 extension (2.5.29.15). The key usage value will ORed values of the:
GNUTLS_KEY_DIGITAL_SIGNATURE
,GNUTLS_KEY_NON_REPUDIATION
,GNUTLS_KEY_KEY_ENCIPHERMENT
,GNUTLS_KEY_DATA_ENCIPHERMENT
,GNUTLS_KEY_KEY_AGREEMENT
,GNUTLS_KEY_KEY_CERT_SIGN
,GNUTLS_KEY_CRL_SIGN
,GNUTLS_KEY_ENCIPHER_ONLY
,GNUTLS_KEY_DECIPHER_ONLY
.Returns: the certificate key usage, or a negative error code in case of parsing error. If the certificate does not contain the keyUsage extension
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Since: 2.8.0
crq: should contain a
gnutls_x509_crq_t
structurebits: if bits is non-
NULL
it will hold the size of the parameters' in bitsThis function will return the public key algorithm of a PKCS
10
certificate request.If bits is non-
NULL
, it should have enough size to hold the parameters size in bits. For RSA the bits returned is the modulus. For DSA the bits returned are of the public exponent.Returns: a member of the
gnutls_pk_algorithm_t
enumeration on success, or a negative error code on error.
crq: should contain a
gnutls_x509_crq_t
structureactivation: The activation time
expiration: The expiration time
critical: the extension status
This function will return the expiration and activation times of the private key of the certificate.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the extension is not present, otherwise a negative error value.
crq: should contain a
gnutls_x509_crq_t
structureseq: specifies the sequence number of the alt name, 0 for the first one, 1 for the second etc.
ret: is the place where the alternative name will be copied to
ret_size: holds the size of ret.
ret_type: holds the
gnutls_x509_subject_alt_name_t
name typecritical: will be non-zero if the extension is marked as critical (may be null)
This function will return the alternative names, contained in the given certificate. It is the same as
gnutls_x509_crq_get_subject_alt_name()
except for the fact that it will return the type of the alternative name inret_type
even if the function fails for some reason (i.e. the buffer provided is not enough).Returns: the alternative subject name type on success, one of the enumerated
gnutls_x509_subject_alt_name_t
. It will returnGNUTLS_E_SHORT_MEMORY_BUFFER
ifret_size
is not large enough to hold the value. In that caseret_size
will be updated with the required size. If the certificate request does not have an Alternative name with the specified sequence number thenGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.Since: 2.8.0
crq: should contain a
gnutls_x509_crq_t
structureseq: specifies the sequence number of the alt name (0 for the first one, 1 for the second etc.)
ret: is the place where the otherName OID will be copied to
ret_size: holds the size of ret.
This function will extract the type OID of an otherName Subject Alternative Name, contained in the given certificate, and return the type as an enumerated element.
This function is only useful if
gnutls_x509_crq_get_subject_alt_name()
returnedGNUTLS_SAN_OTHERNAME
.Returns: the alternative subject name type on success, one of the enumerated gnutls_x509_subject_alt_name_t. For supported OIDs, it will return one of the virtual (GNUTLS_SAN_OTHERNAME_*) types, e.g.
GNUTLS_SAN_OTHERNAME_XMPP
, andGNUTLS_SAN_OTHERNAME
for unknown OIDs. It will returnGNUTLS_E_SHORT_MEMORY_BUFFER
ifret_size
is not large enough to hold the value. In that caseret_size
will be updated with the required size. If the certificate does not have an Alternative name with the specified sequence number and with the otherName type thenGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.Since: 2.8.0
crq: should contain a
gnutls_x509_crq_t
structureThis function will return the version of the specified Certificate request.
Returns: version of certificate request, or a negative error code on error.
crq: The structure to store the parsed certificate request.
data: The DER or PEM encoded certificate.
format: One of DER or PEM
This function will convert the given DER or PEM encoded certificate request to a
gnutls_x509_crq_t
structure. The output will be stored incrq
.If the Certificate is PEM encoded it should have a header of "NEW CERTIFICATE REQUEST".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crq: The structure to be initialized
This function will initialize a PKCS
10
certificate request structure.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crq: The structure to be printed
format: Indicate the format to use
out: Newly allocated datum with null terminated string.
This function will pretty print a certificate request, suitable for display to a human.
The output
out
needs to be deallocated usinggnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.8.0
crq: should contain a
gnutls_x509_crq_t
structureoid: holds an Object Identifier in a null-terminated string
buf: a pointer to a structure that holds the attribute data
buf_size: holds the size of
buf
This function will set the attribute in the certificate request specified by the given Object ID. The provided attribute must be be DER encoded.
Attributes in a certificate request is an optional set of data appended to the request. Their interpretation depends on the CA policy.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crq: a certificate request of type
gnutls_x509_crq_t
ca: true(1) or false(0) depending on the Certificate authority status.
pathLenConstraint: non-negative error codes indicate maximum length of path, and negative error codes indicate that the pathLenConstraints field should not be present.
This function will set the basicConstraints certificate extension.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.8.0
crq: should contain a
gnutls_x509_crq_t
structurepass: holds a (0)-terminated password
This function will set a challenge password to be used when revoking the request.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crq: a certificate of type
gnutls_x509_crq_t
dn: a comma separated DN string (RFC4514)
err: indicates the error position (if any)
This function will set the DN on the provided certificate. The input string should be plain ASCII or UTF-8 encoded.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crq: should contain a
gnutls_x509_crq_t
structureoid: holds an Object Identifier in a (0)-terminated string
raw_flag: must be 0, or 1 if the data are DER encoded
data: a pointer to the input data
sizeof_data: holds the size of
data
This function will set the part of the name of the Certificate request subject, specified by the given OID. The input string should be ASCII or UTF-8 encoded.
Some helper macros with popular OIDs can be found in gnutls/x509.h With this function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known()
. For OIDs that are not known (by gnutls) you should properly DER encode your data, and call this function with raw_flag set.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crq: should contain a
gnutls_x509_crq_t
structurekey: holds a private key
This function will set the public parameters from the given private key to the request.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crq: a certificate of type
gnutls_x509_crq_t
oid: a pointer to a (0)-terminated string that holds the OID
critical: Whether this extension will be critical or not
This function will set the key purpose OIDs of the Certificate. These are stored in the Extended Key Usage extension (2.5.29.37) See the GNUTLS_KP_* definitions for human readable names.
Subsequent calls to this function will append OIDs to the OID list.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.8.0
crq: should contain a
gnutls_x509_crq_t
structurem: holds the modulus
e: holds the public exponent
This function will set the public parameters from the given private key to the request. Only RSA keys are currently supported.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.6.0
crq: a certificate request of type
gnutls_x509_crq_t
usage: an ORed sequence of the GNUTLS_KEY_* elements.
This function will set the keyUsage certificate extension.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.8.0
crq: a certificate of type
gnutls_x509_crq_t
activation: The activation time
expiration: The expiration time
This function will set the private key usage period extension (2.5.29.16).
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crq: a certificate request of type
gnutls_x509_crq_t
nt: is one of the
gnutls_x509_subject_alt_name_t
enumerationsdata: The data to be set
data_size: The size of data to be set
flags:
GNUTLS_FSAN_SET
to clear previous data orGNUTLS_FSAN_APPEND
to append.This function will set the subject alternative name certificate extension. It can set the following types:
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.8.0
crq: should contain a
gnutls_x509_crq_t
structureversion: holds the version number, for v1 Requests must be 1
This function will set the version of the certificate request. For version 1 requests this must be one.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crq: should contain a
gnutls_x509_crq_t
structurekey: holds a private key
dig: The message digest to use, i.e.,
GNUTLS_DIG_SHA1
flags: must be 0
This function will sign the certificate request with a private key. This must be the same key as the one used in
gnutls_x509_crt_set_key()
since a certificate request is self signed.This must be the last step in a certificate request generation since all the previously set parameters are now signed.
Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.GNUTLS_E_ASN1_VALUE_NOT_FOUND
is returned if you didn't set all information in the certificate request (e.g., the version usinggnutls_x509_crq_set_version()
).
crq: is the crq to be verified
flags: Flags that may be used to change the verification algorithm. Use OR of the gnutls_certificate_verify_flags enumerations.
This function will verify self signature in the certificate request and return its status.
Returns: In case of a verification failure
GNUTLS_E_PK_SIG_VERIFY_FAILED
is returned, and zero or positive code on success.Since 2.12.0
cert: should contain an gnutls_x509_crt_t structure
hostname: A null terminated string that contains a DNS name
This function will check if the given certificate's subject matches the given hostname. This is a basic implementation of the matching described in RFC6125, and takes into account wildcards, and the DNSName/IPAddress subject alternative name PKIX extension.
For details see also
gnutls_x509_crt_check_hostname2()
.Returns: non-zero for a successful match, and zero on failure.
cert: should contain an gnutls_x509_crt_t structure
hostname: A null terminated string that contains a DNS name
flags: gnutls_certificate_verify_flags
This function will check if the given certificate's subject matches the given hostname. This is a basic implementation of the matching described in RFC6125, and takes into account wildcards, and the DNSName/IPAddress subject alternative name PKIX extension.
IPv4 addresses are accepted by this function in the dotted-decimal format (e.g, ddd.ddd.ddd.ddd), and IPv6 addresses in the hexadecimal x:x:x:x:x:x:x:x format. For them the IPAddress subject alternative name extension is consulted, as well as the DNSNames in case of a non-match. The latter fallback exists due to misconfiguration of many servers which place an IPAddress inside the DNSName extension.
The comparison of dns names may have false-negatives as it is done byte by byte in non-ascii names.
When the flag
GNUTLS_VERIFY_DO_NOT_ALLOW_WILDCARDS
is specified no wildcards are considered. Otherwise they are only considered if the domain name consists of three components or more, and the wildcard starts at the leftmost position.Returns: non-zero for a successful match, and zero on failure.
cert: is the certificate to be checked
issuer: is the certificate of a possible issuer
This function will check if the given certificate was issued by the given issuer. It checks the DN fields and the authority key identifier and subject key identifier fields match.
Returns: It will return true (1) if the given certificate is issued by the given issuer, and false (0) if not.
cert: should contain a
gnutls_x509_crt_t
structurecrl_list: should contain a list of gnutls_x509_crl_t structures
crl_list_length: the length of the crl_list
This function will return check if the given certificate is revoked. It is assumed that the CRLs have been verified before.
Returns: 0 if the certificate is NOT revoked, and 1 if it is. A negative error code is returned on error.
dst: a certificate of type
gnutls_x509_crt_t
src: the certificate where the dist points will be copied from
This function will copy the CRL distribution points certificate extension, from the source to the destination certificate. This may be useful to copy from a CA certificate to issued ones.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
cert: The structure to be deinitialized
This function will deinitialize a certificate structure.
cert: Holds the certificate
format: the format of output params. One of PEM or DER.
output_data: will contain a certificate PEM or DER encoded
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will export the certificate to DER or PEM format.
If the buffer provided is not long enough to hold the output, then *output_data_size is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.
If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".
Returns: In case of failure a negative error code will be returned, and 0 on success.
cert: Holds the certificate
format: the format of output params. One of PEM or DER.
out: will contain a certificate PEM or DER encoded
This function will export the certificate to DER or PEM format. The output buffer is allocated using
gnutls_malloc()
.If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".
Returns: In case of failure a negative error code will be returned, and 0 on success.
Since: 3.1.3
cert: should contain a
gnutls_x509_crt_t
structureThis function will return the time this Certificate was or will be activated.
Returns: activation time, or (time_t)-1 on error.
crt: Holds the certificate
seq: specifies the sequence number of the access descriptor (0 for the first one, 1 for the second etc.)
what: what data to get, a
gnutls_info_access_what_t
type.data: output data to be freed with
gnutls_free()
.critical: pointer to output integer that is set to non-zero if the extension is marked as critical (may be
NULL
)Note that a simpler API to access the authority info data is provided by
gnutls_x509_aia_get()
andgnutls_x509_ext_import_aia()
.This function extracts the Authority Information Access (AIA) extension, see RFC 5280 section 4.2.2.1 for more information. The AIA extension holds a sequence of AccessDescription (AD) data.
The
seq
input parameter is used to indicate which member of the sequence the caller is interested in. The first member is 0, the second member 1 and so on. When theseq
value is out of bounds,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.The type of data returned in
data
is specified viawhat
which should begnutls_info_access_what_t
values.If
what
isGNUTLS_IA_ACCESSMETHOD_OID
thendata
will hold the accessMethod OID (e.g., "1.3.6.1.5.5.7.48.1").If
what
isGNUTLS_IA_ACCESSLOCATION_GENERALNAME_TYPE
,data
will hold the accessLocation GeneralName type (e.g., "uniformResourceIdentifier").If
what
isGNUTLS_IA_URI
,data
will hold the accessLocation URI data. Requesting thiswhat
value leads to an error if the accessLocation is not of the "uniformResourceIdentifier" type.If
what
isGNUTLS_IA_OCSP_URI
,data
will hold the OCSP URI. Requesting thiswhat
value leads to an error if the accessMethod is not 1.3.6.1.5.5.7.48.1 aka OSCP, or if accessLocation is not of the "uniformResourceIdentifier" type.If
what
isGNUTLS_IA_CAISSUERS_URI
,data
will hold the caIssuers URI. Requesting thiswhat
value leads to an error if the accessMethod is not 1.3.6.1.5.5.7.48.2 aka caIssuers, or if accessLocation is not of the "uniformResourceIdentifier" type.More
what
values may be allocated in the future as needed.If
data
is NULL, the function does the same without storing the output data, that is, it will setcritical
and do error checking as usual.The value of the critical flag is returned in *
critical
. Supply a NULLcritical
if you want the function to make sure the extension is non-critical, as required by RFC 5280.Returns:
GNUTLS_E_SUCCESS
on success,GNUTLS_E_INVALID_REQUEST
on invalidcrt
,GNUTLS_E_CONSTRAINT_ERROR
if the extension is incorrectly marked as critical (use a non-NULLcritical
to override),GNUTLS_E_UNKNOWN_ALGORITHM
if the requested OID does not match (e.g., when usingGNUTLS_IA_OCSP_URI
), otherwise a negative error code.Since: 3.0
cert: should contain a
gnutls_x509_crt_t
structureseq: specifies the sequence number of the alt name (0 for the first one, 1 for the second etc.)
alt: is the place where the alternative name will be copied to
alt_size: holds the size of alt.
alt_type: holds the type of the alternative name (one of gnutls_x509_subject_alt_name_t).
serial: buffer to store the serial number (may be null)
serial_size: Holds the size of the serial field (may be null)
critical: will be non-zero if the extension is marked as critical (may be null)
This function will return the X.509 authority key identifier when stored as a general name (authorityCertIssuer) and serial number.
Because more than one general names might be stored
seq
can be used as a counter to request them all untilGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the extension is not present, otherwise a negative error value.Since: 3.0
cert: should contain a
gnutls_x509_crt_t
structureid: The place where the identifier will be copied
id_size: Holds the size of the id field.
critical: will be non-zero if the extension is marked as critical (may be null)
This function will return the X.509v3 certificate authority's key identifier. This is obtained by the X.509 Authority Key identifier extension field (2.5.29.35). Note that this function only returns the keyIdentifier field of the extension and
GNUTLS_E_X509_UNSUPPORTED_EXTENSION
, if the extension contains the name and serial number of the certificate. In that casegnutls_x509_crt_get_authority_key_gn_serial()
may be used.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the extension is not present, otherwise a negative error value.
cert: should contain a
gnutls_x509_crt_t
structurecritical: will be non-zero if the extension is marked as critical
ca: pointer to output integer indicating CA status, may be NULL, value is 1 if the certificate CA flag is set, 0 otherwise.
pathlen: pointer to output integer indicating path length (may be NULL), non-negative error codes indicate a present pathLenConstraint field and the actual value, -1 indicate that the field is absent.
This function will read the certificate's basic constraints, and return the certificates CA status. It reads the basicConstraints X.509 extension (2.5.29.19).
Returns: If the certificate is a CA a positive value will be returned, or (0) if the certificate does not have CA flag set. A negative error code may be returned in case of errors. If the certificate does not contain the basicConstraints extension GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be returned.
cert: should contain a
gnutls_x509_crt_t
structurecritical: will be non-zero if the extension is marked as critical
This function will return certificates CA status, by reading the basicConstraints X.509 extension (2.5.29.19). If the certificate is a CA a positive value will be returned, or (0) if the certificate does not have CA flag set.
Use
gnutls_x509_crt_get_basic_constraints()
if you want to read the pathLenConstraint field too.Returns: If the certificate is a CA a positive value will be returned, or (0) if the certificate does not have CA flag set. A negative error code may be returned in case of errors. If the certificate does not contain the basicConstraints extension GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be returned.
cert: should contain a
gnutls_x509_crt_t
structureseq: specifies the sequence number of the distribution point (0 for the first one, 1 for the second etc.)
san: is the place where the distribution point will be copied to
san_size: holds the size of ret.
reason_flags: Revocation reasons. An ORed sequence of flags from
gnutls_x509_crl_reason_flags_t
.critical: will be non-zero if the extension is marked as critical (may be null)
This function retrieves the CRL distribution points (2.5.29.31), contained in the given certificate in the X509v3 Certificate Extensions.
Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
and updatesret_size
ifret_size
is not enough to hold the distribution point, or the type of the distribution point if everything was ok. The type is one of the enumeratedgnutls_x509_subject_alt_name_t
. If the certificate does not have an Alternative name with the specified sequence number thenGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.
cert: should contain a
gnutls_x509_crt_t
structurebuf: a pointer to a structure to hold the name (may be null)
buf_size: initially holds the size of
buf
This function will copy the name of the Certificate in the provided buffer. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The output string will be ASCII or UTF-8 encoded, depending on the certificate data.
If
buf
is null then only the size will be filled.Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the provided buffer is not long enough, and in that case thebuf_size
will be updated with the required size. On success 0 is returned.
cert: should contain a
gnutls_x509_crt_t
structuredn: a pointer to a structure to hold the name
This function will allocate buffer and copy the name of the Certificate. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The output string will be ASCII or UTF-8 encoded, depending on the certificate data.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value. and a negative error code on error.Since: 3.1.10
cert: should contain a
gnutls_x509_crt_t
structureoid: holds an Object Identified in null terminated string
indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use (0) to get the first one.
raw_flag: If non-zero returns the raw DER data of the DN part.
buf: a pointer where the DN part will be copied (may be null).
buf_size: initially holds the size of
buf
This function will extract the part of the name of the Certificate subject specified by the given OID. The output, if the raw flag is not used, will be encoded as described in RFC4514. Thus a string that is ASCII or UTF-8 encoded, depending on the certificate data.
Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is (0), this function will only return known OIDs as text. Other OIDs will be DER encoded, as described in RFC4514 – in hex format with a '#' prefix. You can check about known OIDs using
gnutls_x509_dn_oid_known()
.If
buf
is null then only the size will be filled. If theraw_flag
is not specified the output is always null terminated, although thebuf_size
will not include the null character.Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the provided buffer is not long enough, and in that case thebuf_size
will be updated with the required size.GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if there are no data in the current index. On success 0 is returned.
cert: should contain a
gnutls_x509_crt_t
structureindx: This specifies which OID to return. Use (0) to get the first one.
oid: a pointer to a buffer to hold the OID (may be null)
oid_size: initially holds the size of
oid
This function will extract the OIDs of the name of the Certificate subject specified by the given index.
If
oid
is null then only the size will be filled. Theoid
returned will be null terminated, althoughoid_size
will not account for the trailing null.Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the provided buffer is not long enough, and in that case thebuf_size
will be updated with the required size.GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if there are no data in the current index. On success 0 is returned.
cert: should contain a
gnutls_x509_crt_t
structureThis function will return the time this Certificate was or will be expired.
The no well defined expiration time can be checked against with the
GNUTLS_X509_NO_WELL_DEFINED_EXPIRATION
macro.Returns: expiration time, or (time_t)-1 on error.
cert: should contain a
gnutls_x509_crt_t
structureoid: holds an Object Identified in null terminated string
indx: In case multiple same OIDs exist in the extensions, this specifies which to send. Use (0) to get the first one.
buf: a pointer to a structure to hold the name (may be null)
buf_size: initially holds the size of
buf
critical: will be non-zero if the extension is marked as critical
This function will return the extension specified by the OID in the certificate. The extensions will be returned as binary data DER encoded, in the provided buffer.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned. If the certificate does not contain the specified extension GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be returned.
cert: should contain a
gnutls_x509_crt_t
structureoid: holds an Object Identified in null terminated string
indx: In case multiple same OIDs exist in the extensions, this specifies which to send. Use (0) to get the first one.
output: will hold the allocated extension data
critical: will be non-zero if the extension is marked as critical
This function will return the extension specified by the OID in the certificate. The extensions will be returned as binary data DER encoded, in the provided buffer.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned. If the certificate does not contain the specified extension GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be returned.Since: 3.3.8
cert: should contain a
gnutls_x509_crt_t
structureindx: Specifies which extension OID to send. Use (0) to get the first one.
data: a pointer to a structure to hold the data (may be null)
sizeof_data: initially holds the size of
data
This function will return the requested extension data in the certificate. The extension data will be stored in the provided buffer.
Use
gnutls_x509_crt_get_extension_info()
to extract the OID and critical flag. Usegnutls_x509_crt_get_extension_by_oid()
instead, if you want to get data indexed by the extension OID rather than sequence.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned. If you have reached the last extension availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.
cert: should contain a
gnutls_x509_crt_t
structureindx: Specifies which extension OID to read. Use (0) to get the first one.
data: will contain the extension DER-encoded data
This function will return the requested by the index extension data in the certificate. The extension data will be allocated using
gnutls_malloc()
.Use
gnutls_x509_crt_get_extension_info()
to extract the OID.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned. If you have reached the last extension availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.
cert: should contain a
gnutls_x509_crt_t
structureindx: Specifies which extension OID to send. Use (0) to get the first one.
oid: a pointer to a structure to hold the OID
oid_size: initially holds the maximum size of
oid
, on return holds actual size ofoid
.critical: output variable with critical flag, may be NULL.
This function will return the requested extension OID in the certificate, and the critical flag for it. The extension OID will be stored as a string in the provided buffer. Use
gnutls_x509_crt_get_extension()
to extract the data.If the buffer provided is not long enough to hold the output, then
oid_size
is updated andGNUTLS_E_SHORT_MEMORY_BUFFER
will be returned. Theoid
returned will be null terminated, althoughoid_size
will not account for the trailing null.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned. If you have reached the last extension availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.
cert: should contain a
gnutls_x509_crt_t
structureindx: Specifies which extension OID to send. Use (0) to get the first one.
oid: a pointer to a structure to hold the OID (may be null)
oid_size: initially holds the size of
oid
This function will return the requested extension OID in the certificate. The extension OID will be stored as a string in the provided buffer.
The
oid
returned will be null terminated, althoughoid_size
will not account for the trailing null.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned. If you have reached the last extension availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.
cert: should contain a
gnutls_x509_crt_t
structurealgo: is a digest algorithm
buf: a pointer to a structure to hold the fingerprint (may be null)
buf_size: initially holds the size of
buf
This function will calculate and copy the certificate's fingerprint in the provided buffer. The fingerprint is a hash of the DER-encoded data of the certificate.
If the buffer is null then only the size will be filled.
Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the provided buffer is not long enough, and in that case the *buf_size will be updated with the required size. On success 0 is returned.
cert: should contain a
gnutls_x509_crt_t
structuredn: output variable with pointer to uint8_t DN
Return the Certificate's Issuer DN as a
gnutls_x509_dn_t
data type, that can be decoded usinggnutls_x509_dn_get_rdn_ava()
.Note that
dn
should be treated as constant. Because it points into thecert
object, you should not usedn
aftercert
is deallocated.Returns: Returns 0 on success, or an error code.
cert: should contain a
gnutls_x509_crt_t
structureseq: specifies the sequence number of the alt name (0 for the first one, 1 for the second etc.)
ian: is the place where the alternative name will be copied to
ian_size: holds the size of ian.
critical: will be non-zero if the extension is marked as critical (may be null)
This function retrieves the Issuer Alternative Name (2.5.29.18), contained in the given certificate in the X509v3 Certificate Extensions.
When the SAN type is otherName, it will extract the data in the otherName's value field, and
GNUTLS_SAN_OTHERNAME
is returned. You may usegnutls_x509_crt_get_subject_alt_othername_oid()
to get the corresponding OID and the "virtual" SAN types (e.g.,GNUTLS_SAN_OTHERNAME_XMPP
).If an otherName OID is known, the data will be decoded. Otherwise the returned data will be DER encoded, and you will have to decode it yourself. Currently, only the RFC 3920 id-on-xmppAddr Issuer AltName is recognized.
Returns: the alternative issuer name type on success, one of the enumerated
gnutls_x509_subject_alt_name_t
. It will returnGNUTLS_E_SHORT_MEMORY_BUFFER
ifian_size
is not large enough to hold the value. In that caseian_size
will be updated with the required size. If the certificate does not have an Alternative name with the specified sequence number thenGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.Since: 2.10.0
cert: should contain a
gnutls_x509_crt_t
structureseq: specifies the sequence number of the alt name (0 for the first one, 1 for the second etc.)
ian: is the place where the alternative name will be copied to
ian_size: holds the size of ret.
ian_type: holds the type of the alternative name (one of gnutls_x509_subject_alt_name_t).
critical: will be non-zero if the extension is marked as critical (may be null)
This function will return the alternative names, contained in the given certificate. It is the same as
gnutls_x509_crt_get_issuer_alt_name()
except for the fact that it will return the type of the alternative name inian_type
even if the function fails for some reason (i.e. the buffer provided is not enough).Returns: the alternative issuer name type on success, one of the enumerated
gnutls_x509_subject_alt_name_t
. It will returnGNUTLS_E_SHORT_MEMORY_BUFFER
ifian_size
is not large enough to hold the value. In that caseian_size
will be updated with the required size. If the certificate does not have an Alternative name with the specified sequence number thenGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.Since: 2.10.0
cert: should contain a
gnutls_x509_crt_t
structureseq: specifies the sequence number of the alt name (0 for the first one, 1 for the second etc.)
ret: is the place where the otherName OID will be copied to
ret_size: holds the size of ret.
This function will extract the type OID of an otherName Subject Alternative Name, contained in the given certificate, and return the type as an enumerated element.
If
oid
is null then only the size will be filled. Theoid
returned will be null terminated, althoughoid_size
will not account for the trailing null.This function is only useful if
gnutls_x509_crt_get_issuer_alt_name()
returnedGNUTLS_SAN_OTHERNAME
.Returns: the alternative issuer name type on success, one of the enumerated gnutls_x509_subject_alt_name_t. For supported OIDs, it will return one of the virtual (GNUTLS_SAN_OTHERNAME_*) types, e.g.
GNUTLS_SAN_OTHERNAME_XMPP
, andGNUTLS_SAN_OTHERNAME
for unknown OIDs. It will returnGNUTLS_E_SHORT_MEMORY_BUFFER
ifret_size
is not large enough to hold the value. In that caseret_size
will be updated with the required size. If the certificate does not have an Alternative name with the specified sequence number and with the otherName type thenGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.Since: 2.10.0
cert: should contain a
gnutls_x509_crt_t
structurebuf: a pointer to a structure to hold the name (may be null)
buf_size: initially holds the size of
buf
This function will copy the name of the Certificate issuer in the provided buffer. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The output string will be ASCII or UTF-8 encoded, depending on the certificate data.
If
buf
is null then only the size will be filled.Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough, and in that case the
buf_size
will be updated with the required size. On success 0 is returned.
cert: should contain a
gnutls_x509_crt_t
structuredn: a pointer to a structure to hold the name
This function will allocate buffer and copy the name of issuer of the Certificate. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The output string will be ASCII or UTF-8 encoded, depending on the certificate data.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value. and a negative error code on error.Since: 3.1.10
cert: should contain a
gnutls_x509_crt_t
structureoid: holds an Object Identified in null terminated string
indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use (0) to get the first one.
raw_flag: If non-zero returns the raw DER data of the DN part.
buf: a pointer to a structure to hold the name (may be null)
buf_size: initially holds the size of
buf
This function will extract the part of the name of the Certificate issuer specified by the given OID. The output, if the raw flag is not used, will be encoded as described in RFC4514. Thus a string that is ASCII or UTF-8 encoded, depending on the certificate data.
Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is (0), this function will only return known OIDs as text. Other OIDs will be DER encoded, as described in RFC4514 – in hex format with a '#' prefix. You can check about known OIDs using
gnutls_x509_dn_oid_known()
.If
buf
is null then only the size will be filled. If theraw_flag
is not specified the output is always null terminated, although thebuf_size
will not include the null character.Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the provided buffer is not long enough, and in that case thebuf_size
will be updated with the required size.GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if there are no data in the current index. On success 0 is returned.
cert: should contain a
gnutls_x509_crt_t
structureindx: This specifies which OID to return. Use (0) to get the first one.
oid: a pointer to a buffer to hold the OID (may be null)
oid_size: initially holds the size of
oid
This function will extract the OIDs of the name of the Certificate issuer specified by the given index.
If
oid
is null then only the size will be filled. Theoid
returned will be null terminated, althoughoid_size
will not account for the trailing null.Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the provided buffer is not long enough, and in that case thebuf_size
will be updated with the required size.GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if there are no data in the current index. On success 0 is returned.
crt: Holds the certificate
buf: user allocated memory buffer, will hold the unique id
buf_size: size of user allocated memory buffer (on input), will hold actual size of the unique ID on return.
This function will extract the issuerUniqueID value (if present) for the given certificate.
If the user allocated memory buffer is not large enough to hold the full subjectUniqueID, then a GNUTLS_E_SHORT_MEMORY_BUFFER error will be returned, and buf_size will be set to the actual length.
Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 2.12.0
crt: Holds the certificate
flags: should be 0 for now
output_data: will contain the key ID
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will return a unique ID that depends on the public key parameters. This ID can be used in checking whether a certificate corresponds to the given private key.
If the buffer provided is not long enough to hold the output, then *output_data_size is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned. The output will normally be a SHA-1 hash output, which is 20 bytes.
Returns: In case of failure a negative error code will be returned, and 0 on success.
cert: should contain a
gnutls_x509_crt_t
structureindx: This specifies which OID to return. Use (0) to get the first one.
oid: a pointer to a buffer to hold the OID (may be null)
oid_size: initially holds the size of
oid
critical: output flag to indicate criticality of extension
This function will extract the key purpose OIDs of the Certificate specified by the given index. These are stored in the Extended Key Usage extension (2.5.29.37) See the GNUTLS_KP_* definitions for human readable names.
If
oid
is null then only the size will be filled. Theoid
returned will be null terminated, althoughoid_size
will not account for the trailing null.Returns:
GNUTLS_E_SHORT_MEMORY_BUFFER
if the provided buffer is not long enough, and in that case the *oid_size will be updated with the required size. On success 0 is returned.
cert: should contain a
gnutls_x509_crt_t
structurekey_usage: where the key usage bits will be stored
critical: will be non-zero if the extension is marked as critical
This function will return certificate's key usage, by reading the keyUsage X.509 extension (2.5.29.15). The key usage value will ORed values of the:
GNUTLS_KEY_DIGITAL_SIGNATURE
,GNUTLS_KEY_NON_REPUDIATION
,GNUTLS_KEY_KEY_ENCIPHERMENT
,GNUTLS_KEY_DATA_ENCIPHERMENT
,GNUTLS_KEY_KEY_AGREEMENT
,GNUTLS_KEY_KEY_CERT_SIGN
,GNUTLS_KEY_CRL_SIGN
,GNUTLS_KEY_ENCIPHER_ONLY
,GNUTLS_KEY_DECIPHER_ONLY
.Returns: the certificate key usage, or a negative error code in case of parsing error. If the certificate does not contain the keyUsage extension
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.
crt: should contain a
gnutls_x509_crt_t
structurenc: The nameconstraints intermediate structure
flags: zero or
GNUTLS_NAME_CONSTRAINTS_FLAG_APPEND
critical: the extension status
This function will return an intermediate structure containing the name constraints of the provided CA certificate. That structure can be used in combination with
gnutls_x509_name_constraints_check()
to verify whether a server's name is in accordance with the constraints.When the
flags
is set toGNUTLS_NAME_CONSTRAINTS_FLAG_APPEND
, then if thenc
structure is empty this function will behave identically as if the flag was not set. Otherwise if there are elements in thenc
structure then only the excluded constraints will be appended to the constraints.Note that
nc
must be initialized prior to calling this function.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the extension is not present, otherwise a negative error value.Since: 3.3.0
cert: should contain a
gnutls_x509_crt_t
structurebits: if bits is non null it will hold the size of the parameters' in bits
This function will return the public key algorithm of an X.509 certificate.
If bits is non null, it should have enough size to hold the parameters size in bits. For RSA the bits returned is the modulus. For DSA the bits returned are of the public exponent.
Returns: a member of the
gnutls_pk_algorithm_t
enumeration on success, or a negative error code on error.
crt: Holds the certificate
p: will hold the p
q: will hold the q
g: will hold the g
y: will hold the y
This function will export the DSA public key's parameters found in the given certificate. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.
crt: Holds the certificate
m: will hold the modulus
e: will hold the public exponent
This function will export the RSA public key's parameters found in the given structure. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.
crt: should contain a
gnutls_x509_crt_t
structureindx: This specifies which policy to return. Use (0) to get the first one.
policy: A pointer to a policy structure.
critical: will be non-zero if the extension is marked as critical
This function will extract the certificate policy (extension 2.5.29.32) specified by the given index.
The policy returned by this function must be deinitialized by using
gnutls_x509_policy_release()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the extension is not present, otherwise a negative error value.Since: 3.1.5
cert: should contain a
gnutls_x509_crt_t
structureactivation: The activation time
expiration: The expiration time
critical: the extension status
This function will return the expiration and activation times of the private key of the certificate. It relies on the PKIX extension 2.5.29.16 being present.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the extension is not present, otherwise a negative error value.
cert: should contain a
gnutls_x509_crt_t
structurecritical: will be non-zero if the extension is marked as critical
pathlen: pointer to output integer indicating path length (may be NULL), non-negative error codes indicate a present pCPathLenConstraint field and the actual value, -1 indicate that the field is absent.
policyLanguage: output variable with OID of policy language
policy: output variable with policy data
sizeof_policy: output variable size of policy data
This function will get information from a proxy certificate. It reads the ProxyCertInfo X.509 extension (1.3.6.1.5.5.7.1.14).
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
cert: should contain a
gnutls_x509_crt_t
structuredn: will hold the starting point of the DN
This function will return a pointer to the DER encoded DN structure and the length. This points to allocated data that must be free'd using
gnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value. or a negative error code on error.
cert: should contain a
gnutls_x509_crt_t
structuredn: will hold the starting point of the DN
This function will return a pointer to the DER encoded DN structure and the length. This points to allocated data that must be free'd using
gnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.or a negative error code on error.
cert: should contain a
gnutls_x509_crt_t
structureresult: The place where the serial number will be copied
result_size: Holds the size of the result field.
This function will return the X.509 certificate's serial number. This is obtained by the X509 Certificate serialNumber field. Serial is not always a 32 or 64bit number. Some CAs use large serial numbers, thus it may be wise to handle it as something uint8_t.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
cert: should contain a
gnutls_x509_crt_t
structuresig: a pointer where the signature part will be copied (may be null).
sig_size: initially holds the size of
sig
This function will extract the signature field of a certificate.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value. and a negative error code on error.
cert: should contain a
gnutls_x509_crt_t
structureThis function will return a value of the
gnutls_sign_algorithm_t
enumeration that is the signature algorithm that has been used to sign this certificate.Returns: a
gnutls_sign_algorithm_t
value, or a negative error code on error.
cert: should contain a
gnutls_x509_crt_t
structuredn: output variable with pointer to uint8_t DN.
Return the Certificate's Subject DN as a
gnutls_x509_dn_t
data type, that can be decoded usinggnutls_x509_dn_get_rdn_ava()
.Note that
dn
should be treated as constant. Because it points into thecert
object, you should not usedn
aftercert
is deallocated.Returns: Returns 0 on success, or an error code.
cert: should contain a
gnutls_x509_crt_t
structureseq: specifies the sequence number of the alt name (0 for the first one, 1 for the second etc.)
san: is the place where the alternative name will be copied to
san_size: holds the size of san.
critical: will be non-zero if the extension is marked as critical (may be null)
This function retrieves the Alternative Name (2.5.29.17), contained in the given certificate in the X509v3 Certificate Extensions.
When the SAN type is otherName, it will extract the data in the otherName's value field, and
GNUTLS_SAN_OTHERNAME
is returned. You may usegnutls_x509_crt_get_subject_alt_othername_oid()
to get the corresponding OID and the "virtual" SAN types (e.g.,GNUTLS_SAN_OTHERNAME_XMPP
).If an otherName OID is known, the data will be decoded. Otherwise the returned data will be DER encoded, and you will have to decode it yourself. Currently, only the RFC 3920 id-on-xmppAddr SAN is recognized.
Returns: the alternative subject name type on success, one of the enumerated
gnutls_x509_subject_alt_name_t
. It will returnGNUTLS_E_SHORT_MEMORY_BUFFER
ifsan_size
is not large enough to hold the value. In that casesan_size
will be updated with the required size. If the certificate does not have an Alternative name with the specified sequence number thenGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.
cert: should contain a
gnutls_x509_crt_t
structureseq: specifies the sequence number of the alt name (0 for the first one, 1 for the second etc.)
san: is the place where the alternative name will be copied to
san_size: holds the size of ret.
san_type: holds the type of the alternative name (one of gnutls_x509_subject_alt_name_t).
critical: will be non-zero if the extension is marked as critical (may be null)
This function will return the alternative names, contained in the given certificate. It is the same as
gnutls_x509_crt_get_subject_alt_name()
except for the fact that it will return the type of the alternative name insan_type
even if the function fails for some reason (i.e. the buffer provided is not enough).Returns: the alternative subject name type on success, one of the enumerated
gnutls_x509_subject_alt_name_t
. It will returnGNUTLS_E_SHORT_MEMORY_BUFFER
ifsan_size
is not large enough to hold the value. In that casesan_size
will be updated with the required size. If the certificate does not have an Alternative name with the specified sequence number thenGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.
cert: should contain a
gnutls_x509_crt_t
structureseq: specifies the sequence number of the alt name (0 for the first one, 1 for the second etc.)
oid: is the place where the otherName OID will be copied to
oid_size: holds the size of ret.
This function will extract the type OID of an otherName Subject Alternative Name, contained in the given certificate, and return the type as an enumerated element.
This function is only useful if
gnutls_x509_crt_get_subject_alt_name()
returnedGNUTLS_SAN_OTHERNAME
.If
oid
is null then only the size will be filled. Theoid
returned will be null terminated, althoughoid_size
will not account for the trailing null.Returns: the alternative subject name type on success, one of the enumerated gnutls_x509_subject_alt_name_t. For supported OIDs, it will return one of the virtual (GNUTLS_SAN_OTHERNAME_*) types, e.g.
GNUTLS_SAN_OTHERNAME_XMPP
, andGNUTLS_SAN_OTHERNAME
for unknown OIDs. It will returnGNUTLS_E_SHORT_MEMORY_BUFFER
ifian_size
is not large enough to hold the value. In that caseian_size
will be updated with the required size. If the certificate does not have an Alternative name with the specified sequence number and with the otherName type thenGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.
cert: should contain a
gnutls_x509_crt_t
structureret: The place where the identifier will be copied
ret_size: Holds the size of the result field.
critical: will be non-zero if the extension is marked as critical (may be null)
This function will return the X.509v3 certificate's subject key identifier. This is obtained by the X.509 Subject Key identifier extension field (2.5.29.14).
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the extension is not present, otherwise a negative error value.
crt: Holds the certificate
buf: user allocated memory buffer, will hold the unique id
buf_size: size of user allocated memory buffer (on input), will hold actual size of the unique ID on return.
This function will extract the subjectUniqueID value (if present) for the given certificate.
If the user allocated memory buffer is not large enough to hold the full subjectUniqueID, then a GNUTLS_E_SHORT_MEMORY_BUFFER error will be returned, and buf_size will be set to the actual length.
Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.
cert: should contain a
gnutls_x509_crt_t
structureThis function will return the version of the specified Certificate.
Returns: version of certificate, or a negative error code on error.
cert: The structure to store the parsed certificate.
data: The DER or PEM encoded certificate.
format: One of DER or PEM
This function will convert the given DER or PEM encoded Certificate to the native gnutls_x509_crt_t format. The output will be stored in
cert
.If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE", or "CERTIFICATE".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
cert: The structure to be initialized
This function will initialize an X.509 certificate structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
certs: The structures to store the parsed certificate. Must not be initialized.
cert_max: Initially must hold the maximum number of certs. It will be updated with the number of certs available.
data: The PEM encoded certificate.
format: One of DER or PEM.
flags: must be (0) or an OR'd sequence of gnutls_certificate_import_flags.
This function will convert the given PEM encoded certificate list to the native gnutls_x509_crt_t format. The output will be stored in
certs
. They will be automatically initialized.The flag
GNUTLS_X509_CRT_LIST_IMPORT_FAIL_IF_EXCEED
will cause import to fail if the certificates in the provided buffer are more than the available structures. TheGNUTLS_X509_CRT_LIST_FAIL_IF_UNSORTED
flag will cause the function to fail if the provided list is not sorted from subject to issuer.If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE", or "CERTIFICATE".
Returns: the number of certificates read or a negative error value.
certs: The structures to store the parsed certificate. Must not be initialized.
size: It will contain the size of the list.
data: The PEM encoded certificate.
format: One of DER or PEM.
flags: must be (0) or an OR'd sequence of gnutls_certificate_import_flags.
This function will convert the given PEM encoded certificate list to the native gnutls_x509_crt_t format. The output will be stored in
certs
which will allocated and initialized.If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE", or "CERTIFICATE".
To deinitialize
certs
, you need to deinitialize each crt structure independently, and usegnutls_free()
atReturns: the number of certificates read or a negative error value.
Since: 3.0
cert_list: is the certificate list to be verified
cert_list_length: holds the number of certificate in cert_list
CA_list: is the CA list which will be used in verification
CA_list_length: holds the number of CA certificate in CA_list
CRL_list: holds a list of CRLs.
CRL_list_length: the length of CRL list.
flags: Flags that may be used to change the verification algorithm. Use OR of the gnutls_certificate_verify_flags enumerations.
verify: will hold the certificate verification output.
This function will try to verify the given certificate list and return its status. If no flags are specified (0), this function will use the basicConstraints (2.5.29.19) PKIX extension. This means that only a certificate authority is allowed to sign a certificate.
You must also check the peer's name in order to check if the verified certificate belongs to the actual peer.
The certificate verification output will be put in
verify
and will be one or more of the gnutls_certificate_status_t enumerated elements bitwise or'd. For a more detailed verification status usegnutls_x509_crt_verify()
per list element.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
cert: The structure to be printed
format: Indicate the format to use
out: Newly allocated datum with null terminated string.
This function will pretty print a X.509 certificate, suitable for display to a human.
If the format is
GNUTLS_CRT_PRINT_FULL
then all fields of the certificate will be output, on multiple lines. TheGNUTLS_CRT_PRINT_ONELINE
format will generate one line with some selected fields, which is useful for logging purposes.The output
out
needs to be deallocated usinggnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
cert: a certificate of type
gnutls_x509_crt_t
act_time: The actual time
This function will set the time this Certificate was or will be activated.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: Holds the certificate
what: what data to get, a
gnutls_info_access_what_t
type.data: output data to be freed with
gnutls_free()
.This function sets the Authority Information Access (AIA) extension, see RFC 5280 section 4.2.2.1 for more information.
The type of data stored in
data
is specified viawhat
which should begnutls_info_access_what_t
values.If
what
isGNUTLS_IA_OCSP_URI
,data
will hold the OCSP URI. Ifwhat
isGNUTLS_IA_CAISSUERS_URI
,data
will hold the caIssuers URI.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
cert: a certificate of type
gnutls_x509_crt_t
id: The key ID
id_size: Holds the size of the key ID field.
This function will set the X.509 certificate's authority key ID extension. Only the keyIdentifier field can be set with this function.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a certificate of type
gnutls_x509_crt_t
ca: true(1) or false(0). Depending on the Certificate authority status.
pathLenConstraint: non-negative error codes indicate maximum length of path, and negative error codes indicate that the pathLenConstraints field should not be present.
This function will set the basicConstraints certificate extension.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a certificate of type
gnutls_x509_crt_t
ca: true(1) or false(0). Depending on the Certificate authority status.
This function will set the basicConstraints certificate extension. Use
gnutls_x509_crt_set_basic_constraints()
if you want to control the pathLenConstraint field too.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a certificate of type
gnutls_x509_crt_t
type: is one of the gnutls_x509_subject_alt_name_t enumerations
data_string: The data to be set
reason_flags: revocation reasons
This function will set the CRL distribution points certificate extension.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a certificate of type
gnutls_x509_crt_t
type: is one of the gnutls_x509_subject_alt_name_t enumerations
data: The data to be set
data_size: The data size
reason_flags: revocation reasons
This function will set the CRL distribution points certificate extension.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.6.0
crt: a certificate of type
gnutls_x509_crt_t
crq: holds a certificate request
This function will set the name and public parameters as well as the extensions from the given certificate request to the certificate. Only RSA keys are currently supported.
Note that this function will only set the
crq
if it is self signed and the signature is correct. Seegnutls_x509_crq_sign2()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a certificate of type
gnutls_x509_crt_t
crq: holds a certificate request
This function will set extensions from the given request to the certificate.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.8.0
crt: a certificate of type
gnutls_x509_crt_t
dn: a comma separated DN string (RFC4514)
err: indicates the error position (if any)
This function will set the DN on the provided certificate. The input string should be plain ASCII or UTF-8 encoded.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a certificate of type
gnutls_x509_crt_t
oid: holds an Object Identifier in a null terminated string
raw_flag: must be 0, or 1 if the data are DER encoded
name: a pointer to the name
sizeof_name: holds the size of
name
This function will set the part of the name of the Certificate subject, specified by the given OID. The input string should be ASCII or UTF-8 encoded.
Some helper macros with popular OIDs can be found in gnutls/x509.h With this function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known()
. For OIDs that are not known (by gnutls) you should properly DER encode your data, and call this function withraw_flag
set.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
cert: a certificate of type
gnutls_x509_crt_t
exp_time: The actual time
This function will set the time this Certificate will expire. Setting an expiration time to (time_t)-1 or to
GNUTLS_X509_NO_WELL_DEFINED_EXPIRATION
will set to the no well-defined expiration date value.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a certificate of type
gnutls_x509_crt_t
oid: holds an Object Identified in null terminated string
buf: a pointer to a DER encoded data
sizeof_buf: holds the size of
buf
critical: should be non-zero if the extension is to be marked as critical
This function will set an the extension, by the specified OID, in the certificate. The extension data should be binary data DER encoded.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a certificate of type
gnutls_x509_crt_t
type: is one of the gnutls_x509_subject_alt_name_t enumerations
data: The data to be set
data_size: The size of data to be set
flags: GNUTLS_FSAN_SET to clear previous data or GNUTLS_FSAN_APPEND to append.
This function will set the issuer alternative name certificate extension. It can set the same types as
gnutls_x509_crt_set_subject_alt_name()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
crt: a certificate of type
gnutls_x509_crt_t
dn: a comma separated DN string (RFC4514)
err: indicates the error position (if any)
This function will set the DN on the provided certificate. The input string should be plain ASCII or UTF-8 encoded.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a certificate of type
gnutls_x509_crt_t
oid: holds an Object Identifier in a null terminated string
raw_flag: must be 0, or 1 if the data are DER encoded
name: a pointer to the name
sizeof_name: holds the size of
name
This function will set the part of the name of the Certificate issuer, specified by the given OID. The input string should be ASCII or UTF-8 encoded.
Some helper macros with popular OIDs can be found in gnutls/x509.h With this function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known()
. For OIDs that are not known (by gnutls) you should properly DER encode your data, and call this function withraw_flag
set.Normally you do not need to call this function, since the signing operation will copy the signer's name as the issuer of the certificate.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a certificate of type
gnutls_x509_crt_t
key: holds a private key
This function will set the public parameters from the given private key to the certificate. Only RSA keys are currently supported.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
cert: a certificate of type
gnutls_x509_crt_t
oid: a pointer to a null terminated string that holds the OID
critical: Whether this extension will be critical or not
This function will set the key purpose OIDs of the Certificate. These are stored in the Extended Key Usage extension (2.5.29.37) See the GNUTLS_KP_* definitions for human readable names.
Subsequent calls to this function will append OIDs to the OID list.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
crt: a certificate of type
gnutls_x509_crt_t
usage: an ORed sequence of the GNUTLS_KEY_* elements.
This function will set the keyUsage certificate extension.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: The certificate structure
nc: The nameconstraints structure
critical: whether this extension will be critical
This function will set the provided name constraints to the certificate extension list. This extension is always marked as critical.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
crt: The certificate structure
fn: the callback
userdata: data associated with the callback
This function will set a callback function to be used when it is required to access a protected object. This function overrides the global function set using
gnutls_pkcs11_set_pin_function()
.Note that this callback is currently used only during the import of a PKCS
11
certificate withgnutls_x509_crt_import_pkcs11_url()
.Since: 3.1.0
crt: should contain a
gnutls_x509_crt_t
structurepolicy: A pointer to a policy structure.
critical: use non-zero if the extension is marked as critical
This function will set the certificate policy extension (2.5.29.32). Multiple calls to this function append a new policy.
Note the maximum text size for the qualifier
GNUTLS_X509_QUALIFIER_NOTICE
is 200 characters. This function will fail withGNUTLS_E_INVALID_REQUEST
if this is exceeded.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.5
crt: a certificate of type
gnutls_x509_crt_t
activation: The activation time
expiration: The expiration time
This function will set the private key usage period extension (2.5.29.16).
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a certificate of type
gnutls_x509_crt_t
pathLenConstraint: non-negative error codes indicate maximum length of path, and negative error codes indicate that the pathLenConstraints field should not be present.
policyLanguage: OID describing the language of
policy
.policy: uint8_t byte array with policy language, can be
NULL
sizeof_policy: size of
policy
.This function will set the proxyCertInfo extension.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a gnutls_x509_crt_t structure with the new proxy cert
eecrt: the end entity certificate that will be issuing the proxy
raw_flag: must be 0, or 1 if the CN is DER encoded
name: a pointer to the CN name, may be NULL (but MUST then be added later)
sizeof_name: holds the size of
name
This function will set the subject in
crt
to the end entity'seecrt
subject name, and add a single Common Name componentname
of sizesizeof_name
. This corresponds to the required proxy certificate naming style. Note that ifname
isNULL
, you MUST set it later by usinggnutls_x509_crt_set_dn_by_oid()
or similar.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
cert: a certificate of type
gnutls_x509_crt_t
serial: The serial number
serial_size: Holds the size of the serial field.
This function will set the X.509 certificate's serial number. While the serial number is an integer, it is often handled as an opaque field by several CAs. For this reason this function accepts any kind of data as a serial number. To be consistent with the X.509/PKIX specifications the provided
serial
should be a big-endian positive number (i.e. it's leftmost bit should be zero).Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a certificate of type
gnutls_x509_crt_t
type: is one of the gnutls_x509_subject_alt_name_t enumerations
data: The data to be set
data_size: The size of data to be set
flags: GNUTLS_FSAN_SET to clear previous data or GNUTLS_FSAN_APPEND to append.
This function will set the subject alternative name certificate extension. It can set the following types:
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.6.0
crt: a certificate of type
gnutls_x509_crt_t
type: is one of the gnutls_x509_subject_alt_name_t enumerations
data_string: The data to be set, a (0) terminated string
This function will set the subject alternative name certificate extension. This function assumes that data can be expressed as a null terminated string.
The name of the function is unfortunate since it is incosistent with
gnutls_x509_crt_get_subject_alt_name()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
cert: a certificate of type
gnutls_x509_crt_t
id: The key ID
id_size: Holds the size of the subject key ID field.
This function will set the X.509 certificate's subject key ID extension.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a certificate of type
gnutls_x509_crt_t
version: holds the version number. For X.509v1 certificates must be 1.
This function will set the version of the certificate. This must be one for X.509 version 1, and so on. Plain certificates without extensions must have version set to one.
To create well-formed certificates, you must specify version 3 if you use any certificate extensions. Extensions are created by functions such as
gnutls_x509_crt_set_subject_alt_name()
orgnutls_x509_crt_set_key_usage()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a certificate of type
gnutls_x509_crt_t
issuer: is the certificate of the certificate issuer
issuer_key: holds the issuer's private key
This function is the same a
gnutls_x509_crt_sign2()
with no flags, and SHA1 as the hash algorithm.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: a certificate of type
gnutls_x509_crt_t
issuer: is the certificate of the certificate issuer
issuer_key: holds the issuer's private key
dig: The message digest to use,
GNUTLS_DIG_SHA1
is a safe choiceflags: must be 0
This function will sign the certificate with the issuer's private key, and will copy the issuer's information into the certificate.
This must be the last step in a certificate generation since all the previously set parameters are now signed.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
cert: is the certificate to be verified
CA_list: is one certificate that is considered to be trusted one
CA_list_length: holds the number of CA certificate in CA_list
flags: Flags that may be used to change the verification algorithm. Use OR of the gnutls_certificate_verify_flags enumerations.
verify: will hold the certificate verification output.
This function will try to verify the given certificate and return its status. Note that a verification error does not imply a negative return status. In that case the
verify
status is set.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
dn: a DN uint8_t object pointer.
This function deallocates the DN object as returned by
gnutls_x509_dn_import()
.Since: 2.4.0
dn: Holds the uint8_t DN object
format: the format of output params. One of PEM or DER.
output_data: will contain a DN PEM or DER encoded
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will export the DN to DER or PEM format.
If the buffer provided is not long enough to hold the output, then *
output_data_size
is updated andGNUTLS_E_SHORT_MEMORY_BUFFER
will be returned.If the structure is PEM encoded, it will have a header of "BEGIN NAME".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
dn: Holds the uint8_t DN object
format: the format of output params. One of PEM or DER.
out: will contain a DN PEM or DER encoded
This function will export the DN to DER or PEM format.
The output buffer is allocated using
gnutls_malloc()
.If the structure is PEM encoded, it will have a header of "BEGIN NAME".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.3
dn: a pointer to DN
irdn: index of RDN
iava: index of AVA.
ava: Pointer to structure which will hold output information.
Get pointers to data within the DN. The format of the
ava
structure is shown below.struct gnutls_x509_ava_st { gnutls_datum_t oid; gnutls_datum_t value; unsigned long value_tag; };
The X.509 distinguished name is a sequence of sequences of strings and this is what the
irdn
andiava
indexes model.Note that
ava
will contain pointers into thedn
structure which in turns points to the original certificate. Thus you should not modify any data or deallocate any of those.This is a low-level function that requires the caller to do the value conversions when necessary (e.g. from UCS-2).
Returns: Returns 0 on success, or an error code.
dn: the structure that will hold the imported DN
data: should contain a DER encoded RDN sequence
This function parses an RDN sequence and stores the result to a
gnutls_x509_dn_t
structure. The structure must have been initialized withgnutls_x509_dn_init()
. You may usegnutls_x509_dn_get_rdn_ava()
to decode the DN.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.4.0
dn: the object to be initialized
This function initializes a
gnutls_x509_dn_t
structure.The object returned must be deallocated using
gnutls_x509_dn_deinit()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.4.0
oid: holds an Object Identifier in a null terminated string
This function will inform about known DN OIDs. This is useful since functions like
gnutls_x509_crt_set_dn_by_oid()
use the information on known OIDs to properly encode their input. Object Identifiers that are not known are not encoded by these functions, and their input is stored directly into the ASN.1 structure. In that case of unknown OIDs, you have the responsibility of DER encoding your data.Returns: 1 on known OIDs and 0 otherwise.
oid: holds an Object Identifier in a null terminated string
flags: 0 or GNUTLS_X509_DN_OID_*
This function will return the name of a known DN OID. If
GNUTLS_X509_DN_OID_RETURN_OID
is specified this function will return the given OID if no descriptive name has been found.Returns: A null terminated string or NULL otherwise.
Since: 3.0
ext: The extensions structure
This function will deinitialize an extensions structure.
Since: 3.3.8
aia: The authority info access structure
ext: The DER-encoded extension data; must be freed using
gnutls_free()
.This function will DER encode the Authority Information Access (AIA) extension; see RFC 5280 section 4.2.2.1 for more information on the extension.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
aki: An initialized authority key identifier structure
ext: The DER-encoded extension data; must be freed using
gnutls_free()
.This function will convert the provided key identifier to a DER-encoded PKIX AuthorityKeyIdentifier extension. The output data in
ext
will be allocated usinggnutls_malloc()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
ca: non-zero for a CA
pathlen: The path length constraint (set to -1 for no constraint)
ext: The DER-encoded extension data; must be freed using
gnutls_free()
.This function will convert the parameters provided to a basic constraints DER encoded extension (2.5.29.19). The
ext
data will be allocated usinggnutls_malloc()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
cdp: A pointer to an initialized CRL distribution points structure.
ext: The DER-encoded extension data; must be freed using
gnutls_free()
.This function will convert the provided policies, to a certificate policy DER encoded extension (2.5.29.31).
The
ext
data will be allocated usinggnutls_malloc()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
p: The key purposes structure
ext: The DER-encoded extension data; must be freed using
gnutls_free()
.This function will convert the key purposes structure to a DER-encoded PKIX ExtKeyUsageSyntax (2.5.29.37) extension. The output data in
ext
will be allocated usingnutls_malloc()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
usage: an ORed sequence of the GNUTLS_KEY_* elements.
ext: The DER-encoded extension data; must be freed using
gnutls_free()
.This function will convert the keyUsage bit string to a DER encoded PKIX extension. The
ext
data will be allocated usinggnutls_malloc()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
nc: The nameconstraints structure
ext: The DER-encoded extension data; must be freed using
gnutls_free()
.This function will convert the provided name constraints structure to a DER-encoded PKIX NameConstraints (2.5.29.30) extension. The output data in
ext
will be allocated usingnutls_malloc()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
policies: A pointer to an initialized policies structure.
ext: The DER-encoded extension data; must be freed using
gnutls_free()
.This function will convert the provided policies, to a certificate policy DER encoded extension (2.5.29.32).
The
ext
data will be allocated usinggnutls_malloc()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
activation: The activation time
expiration: The expiration time
ext: The DER-encoded extension data; must be freed using
gnutls_free()
.This function will convert the periods provided to a private key usage DER encoded extension (2.5.29.16). The
ext
data will be allocated usinggnutls_malloc()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
pathLenConstraint: non-negative error codes indicate maximum length of path, and negative error codes indicate that the pathLenConstraints field should not be present.
policyLanguage: OID describing the language of
policy
.policy: uint8_t byte array with policy language, can be
NULL
sizeof_policy: size of
policy
.ext: The DER-encoded extension data; must be freed using
gnutls_free()
.This function will convert the parameters provided to a proxyCertInfo extension.
The
ext
data will be allocated usinggnutls_malloc()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
sans: The alternative names structure
ext: The DER-encoded extension data; must be freed using
gnutls_free()
.This function will convert the provided alternative names structure to a DER-encoded SubjectAltName PKIX extension. The output data in
ext
will be allocated usinggnutls_malloc()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
id: The key identifier
ext: The DER-encoded extension data; must be freed using
gnutls_free()
.This function will convert the provided key identifier to a DER-encoded PKIX SubjectKeyIdentifier extension. The output data in
ext
will be allocated usinggnutls_malloc()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
ext: The DER-encoded extension data
aia: The authority info access structure
flags: should be zero
This function extracts the Authority Information Access (AIA) extension from the provided DER-encoded data; see RFC 5280 section 4.2.2.1 for more information on the extension. The AIA extension holds a sequence of AccessDescription (AD) data.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
ext: a DER encoded extension
aki: An initialized authority key identifier structure
flags: should be zero
This function will return the subject key ID stored in the provided AuthorityKeyIdentifier extension.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the extension is not present, otherwise a negative error value.Since: 3.3.0
ext: the DER encoded extension data
ca: will be non zero if the CA status is true
pathlen: the path length constraint; will be set to -1 for no limit
This function will return the CA status and path length constraint as written in the PKIX extension 2.5.29.19.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
ext: the DER encoded extension data
cdp: A pointer to an initialized CRL distribution points structure.
flags: should be zero
This function will extract the CRL distribution points extension (2.5.29.31) and store it into the provided structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
ext: The DER-encoded extension data
p: The key purposes structure
flags: should be zero
This function will extract the key purposes in the provided DER-encoded ExtKeyUsageSyntax PKIX extension, to a
gnutls_x509_key_purposes_t
structure. The structure must be initialized.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
ext: the DER encoded extension data
key_usage: where the key usage bits will be stored
This function will return certificate's key usage, by reading the DER data of the keyUsage X.509 extension (2.5.29.15). The key usage value will ORed values of the:
GNUTLS_KEY_DIGITAL_SIGNATURE
,GNUTLS_KEY_NON_REPUDIATION
,GNUTLS_KEY_KEY_ENCIPHERMENT
,GNUTLS_KEY_DATA_ENCIPHERMENT
,GNUTLS_KEY_KEY_AGREEMENT
,GNUTLS_KEY_KEY_CERT_SIGN
,GNUTLS_KEY_CRL_SIGN
,GNUTLS_KEY_ENCIPHER_ONLY
,GNUTLS_KEY_DECIPHER_ONLY
.Returns: the certificate key usage, or a negative error code in case of parsing error. If the certificate does not contain the keyUsage extension
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Since: 3.3.0
ext: a DER encoded extension
nc: The nameconstraints intermediate structure
flags: zero or
GNUTLS_NAME_CONSTRAINTS_FLAG_APPEND
This function will return an intermediate structure containing the name constraints of the provided NameConstraints extension. That structure can be used in combination with
gnutls_x509_name_constraints_check()
to verify whether a server's name is in accordance with the constraints.When the
flags
is set toGNUTLS_NAME_CONSTRAINTS_FLAG_APPEND
, then if thenc
structure is empty this function will behave identically as if the flag was not set. Otherwise if there are elements in thenc
structure then only the excluded constraints will be appended to the constraints.Note that
nc
must be initialized prior to calling this function.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the extension is not present, otherwise a negative error value.Since: 3.3.0
ext: the DER encoded extension data
policies: A pointer to an initialized policies structures.
flags: should be zero
This function will extract the certificate policy extension (2.5.29.32) and store it the provided structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
ext: the DER encoded extension data
activation: Will hold the activation time
expiration: Will hold the expiration time
This function will return the expiration and activation times of the private key as written in the PKIX extension 2.5.29.16.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
ext: the DER encoded extension data
pathlen: pointer to output integer indicating path length (may be NULL), non-negative error codes indicate a present pCPathLenConstraint field and the actual value, -1 indicate that the field is absent.
policyLanguage: output variable with OID of policy language
policy: output variable with policy data
sizeof_policy: output variable size of policy data
This function will return the information from a proxy certificate extension. It reads the ProxyCertInfo X.509 extension (1.3.6.1.5.5.7.1.14). The
policyLanguage
andpolicy
values must be deinitialized usinggnutls_free()
after use.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
ext: The DER-encoded extension data
sans: The alternative names structure
flags: should be zero
This function will export the alternative names in the provided DER-encoded SubjectAltName PKIX extension, to a
gnutls_subject_alt_names_t
structure. The structure must have been initialized.This function will succeed even if there no subject alternative names in the structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
ext: a DER encoded extension
id: will contain the subject key ID
This function will return the subject key ID stored in the provided SubjectKeyIdentifier extension. The ID will be allocated using
gnutls_malloc()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the extension is not present, otherwise a negative error value.Since: 3.3.0
exts: The structures to be printed
exts_size: the number of available structures
format: Indicate the format to use
out: Newly allocated datum with null terminated string.
This function will pretty print X.509 certificate extensions, suitable for display to a human.
The output
out
needs to be deallocated usinggnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
p: The key purposes structure
This function will deinitialize an alternative names structure.
Since: 3.3.0
p: The key purposes structure
idx: The index of the key purpose to retrieve
oid: Will hold the object identifier of the key purpose (to be treated as constant)
This function will retrieve the specified by the index key purpose in the purposes structure. The object identifier will be a null terminated string.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the index is out of bounds, otherwise a negative error value.Since: 3.3.0
p: The key purposes structure
This function will initialize an alternative names structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
p: The key purposes structure
oid: The object identifier of the key purpose
This function will store the specified key purpose in the purposes structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0), otherwise a negative error value.Since: 3.3.0
nc: The nameconstraints structure
type: The type of the constraints
name: The data of the constraints
This function will add a name constraint to the list of excluded constraints.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
nc: The nameconstraints structure
type: The type of the constraints
name: The data of the constraints
This function will add a name constraint to the list of permitted constraints.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
nc: the extracted name constraints structure
type: the type of the constraint to check (of type gnutls_x509_subject_alt_name_t)
name: the name to be checked
This function will check the provided name against the constraints in
nc
using the RFC5280 rules. Currently this function is limited to DNS names and emails (of typeGNUTLS_SAN_DNSNAME
andGNUTLS_SAN_RFC822NAME
).Returns: zero if the provided name is not acceptable, and non-zero otherwise.
Since: 3.3.0
nc: the extracted name constraints structure
type: the type of the constraint to check (of type gnutls_x509_subject_alt_name_t)
cert: the certificate to be checked
This function will check the provided certificate names against the constraints in
nc
using the RFC5280 rules. It will traverse all the certificate's names and alternative names.Currently this function is limited to DNS names and emails (of type
GNUTLS_SAN_DNSNAME
andGNUTLS_SAN_RFC822NAME
).Returns: zero if the provided name is not acceptable, and non-zero otherwise.
Since: 3.3.0
nc: The nameconstraints structure
This function will deinitialize a name constraints structure.
Since: 3.3.0
nc: the extracted name constraints structure
idx: the index of the constraint
type: the type of the constraint (of type gnutls_x509_subject_alt_name_t)
name: the name in the constraint (of the specific type)
This function will return an intermediate structure containing the name constraints of the provided CA certificate. That structure can be used in combination with
gnutls_x509_name_constraints_check()
to verify whether a server's name is in accordance with the constraints.The name should be treated as constant and valid for the lifetime of
nc
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the extension is not present, otherwise a negative error value.Since: 3.3.0
nc: the extracted name constraints structure
idx: the index of the constraint
type: the type of the constraint (of type gnutls_x509_subject_alt_name_t)
name: the name in the constraint (of the specific type)
This function will return an intermediate structure containing the name constraints of the provided CA certificate. That structure can be used in combination with
gnutls_x509_name_constraints_check()
to verify whether a server's name is in accordance with the constraints.The name should be treated as constant and valid for the lifetime of
nc
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the extension is not present, otherwise a negative error value.Since: 3.3.0
nc: The nameconstraints structure
This function will initialize a name constraints structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
oid: The othername object identifier
othername: – undescribed –
virt_type: GNUTLS_SAN_OTHERNAME_XXX
virt: allocated printable data
This function will parse and convert the othername data to a virtual type supported by gnutls.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.8
policies: The authority key identifier structure
This function will deinitialize an authority key identifier structure.
Since: 3.3.0
policies: The policies structure
seq: The index of the name to get
policy: Will hold the policy
This function will return a specific policy as stored in the
policies
structure. The returned values should be treated as constant and valid for the lifetime ofpolicies
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the index is out of bounds, otherwise a negative error value.Since: 3.3.0
policies: The authority key ID structure
This function will initialize an authority key ID structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
policies: An initialized policies structure
policy: Contains the policy to set
This function will store the specified policy in the provided
policies
structure.Returns: On success,
GNUTLS_E_SUCCESS
(0), otherwise a negative error value.Since: 3.3.0
policy: a certificate policy
This function will deinitialize all memory associated with the provided
policy
. The policy is allocated usinggnutls_x509_crt_get_policy()
.Since: 3.1.5
dst: The destination key, which should be initialized.
src: The source key
This function will copy a private key from source to destination key. Destination has to be initialized.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: The structure to be deinitialized
This function will deinitialize a private key structure.
key: Holds the key
format: the format of output params. One of PEM or DER.
output_data: will contain a private key PEM or DER encoded
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will export the private key to a PKCS1 structure for RSA keys, or an integer sequence for DSA keys. The DSA keys are in the same format with the parameters used by openssl.
If the buffer provided is not long enough to hold the output, then *
output_data_size
is updated andGNUTLS_E_SHORT_MEMORY_BUFFER
will be returned.If the structure is PEM encoded, it will have a header of "BEGIN RSA PRIVATE KEY".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: Holds the key
format: the format of output params. One of PEM or DER.
out: will contain a private key PEM or DER encoded
This function will export the private key to a PKCS1 structure for RSA keys, or an integer sequence for DSA keys. The DSA keys are in the same format with the parameters used by openssl.
The output buffer is allocated using
gnutls_malloc()
.If the structure is PEM encoded, it will have a header of "BEGIN RSA PRIVATE KEY".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since 3.1.3
key: Holds the key
format: the format of output params. One of PEM or DER.
password: the password that will be used to encrypt the key.
flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t
out: will contain a private key PEM or DER encoded
This function will export the private key to a PKCS8 structure. Both RSA and DSA keys can be exported. For DSA keys we use PKCS
11
definitions. If the flags do not specify the encryption cipher, then the default 3DES (PBES2) will be used.The
password
can be either ASCII or UTF-8 in the default PBES2 encryption schemas, or ASCII for the PKCS12 schemas.The output buffer is allocated using
gnutls_malloc()
.If the structure is PEM encoded, it will have a header of "BEGIN ENCRYPTED PRIVATE KEY" or "BEGIN PRIVATE KEY" if encryption is not used.
Returns: In case of failure a negative error code will be returned, and 0 on success.
Since 3.1.3
key: a structure that holds the DSA parameters
p: will hold the p
q: will hold the q
g: will hold the g
y: will hold the y
x: will hold the x
This function will export the DSA private key's parameters found in the given structure. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: a structure that holds the rsa parameters
curve: will hold the curve
x: will hold the x coordinate
y: will hold the y coordinate
k: will hold the private key
This function will export the ECC private key's parameters found in the given structure. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
key: Holds the key
format: the format of output params. One of PEM or DER.
password: the password that will be used to encrypt the key.
flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t
output_data: will contain a private key PEM or DER encoded
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will export the private key to a PKCS8 structure. Both RSA and DSA keys can be exported. For DSA keys we use PKCS
11
definitions. If the flags do not specify the encryption cipher, then the default 3DES (PBES2) will be used.The
password
can be either ASCII or UTF-8 in the default PBES2 encryption schemas, or ASCII for the PKCS12 schemas.If the buffer provided is not long enough to hold the output, then *output_data_size is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.
If the structure is PEM encoded, it will have a header of "BEGIN ENCRYPTED PRIVATE KEY" or "BEGIN PRIVATE KEY" if encryption is not used.
Returns: In case of failure a negative error code will be returned, and 0 on success.
key: a structure that holds the rsa parameters
m: will hold the modulus
e: will hold the public exponent
d: will hold the private exponent
p: will hold the first prime (p)
q: will hold the second prime (q)
u: will hold the coefficient
This function will export the RSA private key's parameters found in the given structure. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: a structure that holds the rsa parameters
m: will hold the modulus
e: will hold the public exponent
d: will hold the private exponent
p: will hold the first prime (p)
q: will hold the second prime (q)
u: will hold the coefficient
e1: will hold e1 = d mod (p-1)
e2: will hold e2 = d mod (q-1)
This function will export the RSA private key's parameters found in the given structure. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
key: Holds the key
This function will recalculate the secondary parameters in a key. In RSA keys, this can be the coefficient and exponent1,2.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: should contain a
gnutls_x509_privkey_t
structurealgo: is one of the algorithms in
gnutls_pk_algorithm_t
.bits: the size of the modulus
flags: unused for now. Must be 0.
This function will generate a random private key. Note that this function must be called on an empty private key.
Note that when generating an elliptic curve key, the curve can be substituted in the place of the bits parameter using the
GNUTLS_CURVE_TO_BITS()
macro.For DSA keys, if the subgroup size needs to be specified check the
GNUTLS_SUBGROUP_TO_BITS()
macro.Do not set the number of bits directly, use
gnutls_sec_param_to_pk_bits()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: Holds the key
flags: should be 0 for now
output_data: will contain the key ID
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will return a unique ID that depends on the public key parameters. This ID can be used in checking whether a certificate corresponds to the given key.
If the buffer provided is not long enough to hold the output, then *
output_data_size
is updated andGNUTLS_E_SHORT_MEMORY_BUFFER
will be returned. The output will normally be a SHA-1 hash output, which is 20 bytes.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: should contain a
gnutls_x509_privkey_t
structureThis function will return the public key algorithm of a private key.
Returns: a member of the
gnutls_pk_algorithm_t
enumeration on success, or a negative error code on error.
key: should contain a
gnutls_x509_privkey_t
structurebits: The number of bits in the public key algorithm
This function will return the public key algorithm of a private key.
Returns: a member of the
gnutls_pk_algorithm_t
enumeration on success, or a negative error code on error.
key: The structure to store the parsed key
data: The DER or PEM encoded certificate.
format: One of DER or PEM
This function will convert the given DER or PEM encoded key to the native
gnutls_x509_privkey_t
format. The output will be stored inkey
.If the key is PEM encoded it should have a header that contains "PRIVATE KEY". Note that this function falls back to PKCS
8
decoding without password, if the default format fails to import.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: The structure to store the parsed key
data: The DER or PEM encoded key.
format: One of DER or PEM
password: A password (optional)
flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t
This function will import the given DER or PEM encoded key, to the native
gnutls_x509_privkey_t
format, irrespective of the input format. The input format is auto-detected.The supported formats are basic unencrypted key, PKCS8, PKCS12, and the openssl format.
If the provided key is encrypted but no password was given, then
GNUTLS_E_DECRYPTION_FAILED
is returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: The structure to store the parsed key
p: holds the p
q: holds the q
g: holds the g
y: holds the y
x: holds the x
This function will convert the given DSA raw parameters to the native
gnutls_x509_privkey_t
format. The output will be stored inkey
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: The structure to store the parsed key
curve: holds the curve
x: holds the x
y: holds the y
k: holds the k
This function will convert the given elliptic curve parameters to the native
gnutls_x509_privkey_t
format. The output will be stored inkey
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
key: The structure to store the parsed key
data: The DER or PEM encoded key.
password: the password to decrypt the key (if it is encrypted).
This function will convert the given PEM encrypted to the native gnutls_x509_privkey_t format. The output will be stored in
key
.The
password
should be in ASCII. If the password is not provided or wrong thenGNUTLS_E_DECRYPTION_FAILED
will be returned.If the Certificate is PEM encoded it should have a header of "PRIVATE KEY" and the "DEK-Info" header.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: The structure to store the parsed key
data: The DER or PEM encoded key.
format: One of DER or PEM
password: the password to decrypt the key (if it is encrypted).
flags: 0 if encrypted or GNUTLS_PKCS_PLAIN if not encrypted.
This function will convert the given DER or PEM encoded PKCS8 2.0 encrypted key to the native gnutls_x509_privkey_t format. The output will be stored in
key
. Both RSA and DSA keys can be imported, and flags can only be used to indicate an unencrypted key.The
password
can be either ASCII or UTF-8 in the default PBES2 encryption schemas, or ASCII for the PKCS12 schemas.If the Certificate is PEM encoded it should have a header of "ENCRYPTED PRIVATE KEY", or "PRIVATE KEY". You only need to specify the flags if the key is DER encoded, since in that case the encryption status cannot be auto-detected.
If the
GNUTLS_PKCS_PLAIN
flag is specified and the supplied data are encrypted thenGNUTLS_E_DECRYPTION_FAILED
is returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: The structure to store the parsed key
m: holds the modulus
e: holds the public exponent
d: holds the private exponent
p: holds the first prime (p)
q: holds the second prime (q)
u: holds the coefficient
This function will convert the given RSA raw parameters to the native
gnutls_x509_privkey_t
format. The output will be stored inkey
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: The structure to store the parsed key
m: holds the modulus
e: holds the public exponent
d: holds the private exponent
p: holds the first prime (p)
q: holds the second prime (q)
u: holds the coefficient (optional)
e1: holds e1 = d mod (p-1) (optional)
e2: holds e2 = d mod (q-1) (optional)
This function will convert the given RSA raw parameters to the native
gnutls_x509_privkey_t
format. The output will be stored inkey
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: The structure to be initialized
This function will initialize an private key structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: a key structure
This function will return the security parameter appropriate with this private key.
Returns: On success, a valid security parameter is returned otherwise
GNUTLS_SEC_PARAM_UNKNOWN
is returned.Since: 2.12.0
key: should contain a
gnutls_x509_privkey_t
structureThis function will verify the private key parameters.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
idn: should contain a DER encoded RDN sequence
buf: a pointer to a structure to hold the peer's name
buf_size: holds the size of
buf
This function will return the name of the given RDN sequence. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, orGNUTLS_E_SHORT_MEMORY_BUFFER
is returned and *buf_size
is updated if the provided buffer is not long enough, otherwise a negative error value.
idn: should contain a DER encoded RDN sequence
oid: an Object Identifier
indx: In case multiple same OIDs exist in the RDN indicates which to send. Use 0 for the first one.
raw_flag: If non-zero then the raw DER data are returned.
buf: a pointer to a structure to hold the peer's name
buf_size: holds the size of
buf
This function will return the name of the given Object identifier, of the RDN sequence. The name will be encoded using the rules from RFC4514.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, orGNUTLS_E_SHORT_MEMORY_BUFFER
is returned and *buf_size
is updated if the provided buffer is not long enough, otherwise a negative error value.
idn: should contain a DER encoded RDN sequence
indx: Indicates which OID to return. Use 0 for the first one.
buf: a pointer to a structure to hold the peer's name OID
buf_size: holds the size of
buf
This function will return the specified Object identifier, of the RDN sequence.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, orGNUTLS_E_SHORT_MEMORY_BUFFER
is returned and *buf_size
is updated if the provided buffer is not long enough, otherwise a negative error value.Since: 2.4.0
list: The structure of the list
clist: A list of CAs
clist_size: The length of the CA list
flags: should be 0 or an or'ed sequence of
GNUTLS_TL
options.This function will add the given certificate authorities to the trusted list. The list of CAs must not be deinitialized during this structure's lifetime.
If the flag
GNUTLS_TL_NO_DUPLICATES
is specified, then the providedclist
entries that are duplicates will not be added to the list and will be deinitialized.Returns: The number of added elements is returned.
Since: 3.0.0
list: The structure of the list
crl_list: A list of CRLs
crl_size: The length of the CRL list
flags: if GNUTLS_TL_VERIFY_CRL is given the CRLs will be verified before being added.
verification_flags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL
This function will add the given certificate revocation lists to the trusted list. The list of CRLs must not be deinitialized during this structure's lifetime.
This function must be called after
gnutls_x509_trust_list_add_cas()
to allow verifying the CRLs for validity.Returns: The number of added elements is returned.
Since: 3.0
list: The structure of the list
cert: A certificate
name: An identifier for the certificate
name_size: The size of the identifier
flags: should be 0.
This function will add the given certificate to the trusted list and associate it with a name. The certificate will not be be used for verification with
gnutls_x509_trust_list_verify_crt()
but only withgnutls_x509_trust_list_verify_named_crt()
.In principle this function can be used to set individual "server" certificates that are trusted by the user for that specific server but for no other purposes.
The certificate must not be deinitialized during the lifetime of the trusted list.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0.0
list: The structure of the list
tl_flags: GNUTLS_TL_*
tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL
This function adds the system's default trusted certificate authorities to the trusted list. Note that on unsupported system this function returns
GNUTLS_E_UNIMPLEMENTED_FEATURE
.Returns: The number of added elements or a negative error code on error.
Since: 3.1
list: The structure of the list
ca_dir: A directory containing the CAs (optional)
crl_dir: A directory containing a list of CRLs (optional)
type: The format of the certificates
tl_flags: GNUTLS_TL_*
tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL
This function will add the given certificate authorities to the trusted list. Only directories are accepted by this function.
Returns: The number of added elements is returned.
Since: 3.3.6
list: The structure of the list
ca_file: A file containing a list of CAs (optional)
crl_file: A file containing a list of CRLs (optional)
type: The format of the certificates
tl_flags: GNUTLS_TL_*
tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL
This function will add the given certificate authorities to the trusted list. pkcs11 URLs are also accepted, instead of files, by this function.
Returns: The number of added elements is returned.
Since: 3.1
list: The structure of the list
cas: A buffer containing a list of CAs (optional)
crls: A buffer containing a list of CRLs (optional)
type: The format of the certificates
tl_flags: GNUTLS_TL_*
tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL
This function will add the given certificate authorities to the trusted list.
Returns: The number of added elements is returned.
Since: 3.1
list: The structure to be deinitialized
all: if non-zero it will deinitialize all the certificates and CRLs contained in the structure.
This function will deinitialize a trust list. Note that the
all
flag should be typically non-zero unless you have specified your certificates usinggnutls_x509_trust_list_add_cas()
and you want to prevent them from being deinitialized by this function.Since: 3.0.0
list: The structure of the list
cert: is the certificate to find issuer for
issuer: Will hold the issuer if any. Should be treated as constant.
flags: Use zero.
This function will attempt to find the issuer of the given certificate.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
list: The structure to be initialized
size: The size of the internal hash table. Use (0) for default size.
This function will initialize an X.509 trust list structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0.0
list: The structure of the list
clist: A list of CAs
clist_size: The length of the CA list
This function will remove the given certificate authorities from the trusted list.
Note that this function can accept certificates and authorities not yet known. In that case they will be kept in a separate black list that will be used during certificate verification. Unlike
gnutls_x509_trust_list_add_cas()
there is no deinitialization restriction for certificate list provided in this function.Returns: The number of removed elements is returned.
Since: 3.1.10
list: The structure of the list
ca_file: A file containing a list of CAs
type: The format of the certificates
This function will remove the given certificate authorities from the trusted list, and add them into a black list when needed. PKCS 11 URLs are also accepted, instead of files, by this function.
See also
gnutls_x509_trust_list_remove_cas()
.Returns: The number of added elements is returned.
Since: 3.1.10
list: The structure of the list
cas: A buffer containing a list of CAs (optional)
type: The format of the certificates
This function will remove the provided certificate authorities from the trusted list, and add them into a black list when needed.
See also
gnutls_x509_trust_list_remove_cas()
.Returns: The number of removed elements is returned.
Since: 3.1.10
list: The structure of the list
cert_list: is the certificate list to be verified
cert_list_size: is the certificate list size
flags: Flags that may be used to change the verification algorithm. Use OR of the gnutls_certificate_verify_flags enumerations.
voutput: will hold the certificate verification output.
func: If non-null will be called on each chain element verification with the output.
This function will try to verify the given certificate and return its status. The
verify
parameter will hold an OR'ed sequence ofgnutls_certificate_status_t
flags.Additionally a certificate verification profile can be specified from the ones in
gnutls_certificate_verification_profiles_t
by ORing the result ofGNUTLS_PROFILE_TO_VFLAGS()
to the verification flags.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
list: The structure of the list
cert_list: is the certificate list to be verified
cert_list_size: is the certificate list size
data: an array of typed data
elements: the number of data elements
flags: Flags that may be used to change the verification algorithm. Use OR of the gnutls_certificate_verify_flags enumerations.
voutput: will hold the certificate verification output.
func: If non-null will be called on each chain element verification with the output.
This function will try to verify the given certificate and return its status. The
verify
parameter will hold an OR'ed sequence ofgnutls_certificate_status_t
flags.Additionally a certificate verification profile can be specified from the ones in
gnutls_certificate_verification_profiles_t
by ORing the result ofGNUTLS_PROFILE_TO_VFLAGS()
to the verification flags.The acceptable
data
types areGNUTLS_DT_DNS_HOSTNAME
andGNUTLS_DT_KEY_PURPOSE_OID
. The former accepts as data a null-terminated hostname, and the latter a null-terminated object identifier (e.g.,GNUTLS_KP_TLS_WWW_SERVER
). If a DNS hostname is provided then this function will compare the hostname in the certificate against the given. If names do not match theGNUTLS_CERT_UNEXPECTED_OWNER
status flag will be set. If a key purpose OID is provided and the end-certificate contains the extended key usage PKIX extension, it will be required to be have the provided key purpose or be marked for any purpose, otherwise verification will fail withGNUTLS_CERT_SIGNER_CONSTRAINTS_FAILURE
status.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value. Note that verification failure will not result to an error code, onlyvoutput
will be updated.Since: 3.3.8
list: The structure of the list
cert: is the certificate to be verified
name: is the certificate's name
name_size: is the certificate's name size
flags: Flags that may be used to change the verification algorithm. Use OR of the gnutls_certificate_verify_flags enumerations.
voutput: will hold the certificate verification output.
func: If non-null will be called on each chain element verification with the output.
This function will try to find a certificate that is associated with the provided name –see
gnutls_x509_trust_list_add_named_crt()
. If a match is found the certificate is considered valid. In addition to that this function will also check CRLs. Thevoutput
parameter will hold an OR'ed sequence ofgnutls_certificate_status_t
flags.Additionally a certificate verification profile can be specified from the ones in
gnutls_certificate_verification_profiles_t
by ORing the result ofGNUTLS_PROFILE_TO_VFLAGS()
to the verification flags.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0.0
The following functions are for OCSP certificate status checking. Their prototypes lie in gnutls/ocsp.h.
req: should contain a
gnutls_ocsp_req_t
structuredigest: hash algorithm, a
gnutls_digest_algorithm_t
valueissuer: issuer of
subject
certificatecert: certificate to request status for
This function will add another request to the OCSP request for a particular certificate. The issuer name hash, issuer key hash, and serial number fields is populated as follows. The issuer name and the serial number is taken from
cert
. The issuer key is taken fromissuer
. The hashed values will be hashed using thedigest
algorithm, normallyGNUTLS_DIG_SHA1
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
req: should contain a
gnutls_ocsp_req_t
structuredigest: hash algorithm, a
gnutls_digest_algorithm_t
valueissuer_name_hash: hash of issuer's DN
issuer_key_hash: hash of issuer's public key
serial_number: serial number of certificate to check
This function will add another request to the OCSP request for a particular certificate having the issuer name hash of
issuer_name_hash
and issuer key hash ofissuer_key_hash
(both hashed usingdigest
) and serial numberserial_number
.The information needed corresponds to the CertID structure:
<informalexample><programlisting> CertID ::= SEQUENCE { hashAlgorithm AlgorithmIdentifier, issuerNameHash OCTET STRING, – Hash of Issuer's DN issuerKeyHash OCTET STRING, – Hash of Issuers public key serialNumber CertificateSerialNumber } </programlisting></informalexample>
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
req: The structure to be deinitialized
This function will deinitialize a OCSP request structure.
req: Holds the OCSP request
data: newly allocate buffer holding DER encoded OCSP request
This function will export the OCSP request to DER format.
Returns: In case of failure a negative error code will be returned, and 0 on success.
req: should contain a
gnutls_ocsp_req_t
structureindx: Specifies which extension OID to get. Use (0) to get the first one.
digest: output variable with
gnutls_digest_algorithm_t
hash algorithmissuer_name_hash: output buffer with hash of issuer's DN
issuer_key_hash: output buffer with hash of issuer's public key
serial_number: output buffer with serial number of certificate to check
This function will return the certificate information of the
indx
'ed request in the OCSP request. The information returned corresponds to the CertID structure:<informalexample><programlisting> CertID ::= SEQUENCE { hashAlgorithm AlgorithmIdentifier, issuerNameHash OCTET STRING, – Hash of Issuer's DN issuerKeyHash OCTET STRING, – Hash of Issuers public key serialNumber CertificateSerialNumber } </programlisting></informalexample>
Each of the pointers to output variables may be NULL to indicate that the caller is not interested in that value.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned. If you have reached the last CertID availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.
req: should contain a
gnutls_ocsp_req_t
structureindx: Specifies which extension OID to get. Use (0) to get the first one.
oid: will hold newly allocated buffer with OID of extension, may be NULL
critical: output variable with critical flag, may be NULL.
data: will hold newly allocated buffer with extension data, may be NULL
This function will return all information about the requested extension in the OCSP request. The information returned is the OID, the critical flag, and the data itself. The extension OID will be stored as a string. Any of
oid
,critical
, anddata
may be NULL which means that the caller is not interested in getting that information back.The caller needs to deallocate memory by calling
gnutls_free()
onoid
->data anddata
->data.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned. If you have reached the last extension availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.
req: should contain a
gnutls_ocsp_req_t
structurecritical: whether nonce extension is marked critical, or NULL
nonce: will hold newly allocated buffer with nonce data
This function will return the OCSP request nonce extension data.
The caller needs to deallocate memory by calling
gnutls_free()
onnonce
->data.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
req: should contain a
gnutls_ocsp_req_t
structureThis function will return the version of the OCSP request. Typically this is always 1 indicating version 1.
Returns: version of OCSP request, or a negative error code on error.
req: The structure to store the parsed request.
data: DER encoded OCSP request.
This function will convert the given DER encoded OCSP request to the native
gnutls_ocsp_req_t
format. The output will be stored inreq
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
req: The structure to be initialized
This function will initialize an OCSP request structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
req: The structure to be printed
format: Indicate the format to use
out: Newly allocated datum with (0) terminated string.
This function will pretty print a OCSP request, suitable for display to a human.
If the format is
GNUTLS_OCSP_PRINT_FULL
then all fields of the request will be output, on multiple lines.The output
out
->data needs to be deallocate usinggnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
req: should contain a
gnutls_ocsp_req_t
structureThis function will add or update an nonce extension to the OCSP request with a newly generated random value.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
req: should contain a
gnutls_ocsp_req_t
structureoid: buffer with OID of extension as a string.
critical: critical flag, normally false.
data: the extension data
This function will add an extension to the OCSP request. Calling this function multiple times for the same OID will overwrite values from earlier calls.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
req: should contain a
gnutls_ocsp_req_t
structurecritical: critical flag, normally false.
nonce: the nonce data
This function will add an nonce extension to the OCSP request. Calling this function multiple times will overwrite values from earlier calls.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
resp: should contain a
gnutls_ocsp_resp_t
structureindx: Specifies response number to get. Use (0) to get the first one.
crt: The certificate to check
This function will check whether the OCSP response is about the provided certificate.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.Since: 3.1.3
resp: The structure to be deinitialized
This function will deinitialize a OCSP response structure.
resp: Holds the OCSP response
data: newly allocate buffer holding DER encoded OCSP response
This function will export the OCSP response to DER format.
Returns: In case of failure a negative error code will be returned, and 0 on success.
resp: should contain a
gnutls_ocsp_resp_t
structurecerts: newly allocated array with
gnutls_x509_crt_t
certificatesncerts: output variable with number of allocated certs.
This function will extract the X.509 certificates found in the Basic OCSP Response. The
certs
output variable will hold a newly allocated zero-terminated array with X.509 certificates.Every certificate in the array needs to be de-allocated with
gnutls_x509_crt_deinit()
and the array itself must be freed usinggnutls_free()
.Both the
certs
andncerts
variables may be NULL. Then the function will work as normal but will not return the NULL:d information. This can be used to get the number of certificates only, or to just get the certificate array without its size.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
resp: should contain a
gnutls_ocsp_resp_t
structureindx: Specifies which extension OID to get. Use (0) to get the first one.
oid: will hold newly allocated buffer with OID of extension, may be NULL
critical: output variable with critical flag, may be NULL.
data: will hold newly allocated buffer with extension data, may be NULL
This function will return all information about the requested extension in the OCSP response. The information returned is the OID, the critical flag, and the data itself. The extension OID will be stored as a string. Any of
oid
,critical
, anddata
may be NULL which means that the caller is not interested in getting that information back.The caller needs to deallocate memory by calling
gnutls_free()
onoid
->data anddata
->data.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned. If you have reached the last extension availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.
resp: should contain a
gnutls_ocsp_resp_t
structurecritical: whether nonce extension is marked critical
nonce: will hold newly allocated buffer with nonce data
This function will return the Basic OCSP Response nonce extension data.
The caller needs to deallocate memory by calling
gnutls_free()
onnonce
->data.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
resp: should contain a
gnutls_ocsp_resp_t
structureThis function will return the time when the OCSP response was signed.
Returns: signing time, or (time_t)-1 on error.
resp: should contain a
gnutls_ocsp_resp_t
structuredn: newly allocated buffer with name
This function will extract the name of the Basic OCSP Response in the provided buffer. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC2253. The output string will be ASCII or UTF-8 encoded, depending on the certificate data.
The caller needs to deallocate memory by calling
gnutls_free()
ondn
->data.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
resp: should contain a
gnutls_ocsp_resp_t
structureresponse_type_oid: newly allocated output buffer with response type OID
response: newly allocated output buffer with DER encoded response
This function will extract the response type OID in and the response data from an OCSP response. Normally the
response_type_oid
is always "1.3.6.1.5.5.7.48.1.1" which means theresponse
should be decoded as a Basic OCSP Response, but technically other response types could be used.This function is typically only useful when you want to extract the response type OID of an response for diagnostic purposes. Otherwise
gnutls_ocsp_resp_import()
will decode the basic OCSP response part and the caller need not worry about that aspect.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
resp: should contain a
gnutls_ocsp_resp_t
structuresig: newly allocated output buffer with signature data
This function will extract the signature field of a OCSP response.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
resp: should contain a
gnutls_ocsp_resp_t
structureThis function will return a value of the
gnutls_sign_algorithm_t
enumeration that is the signature algorithm that has been used to sign the OCSP response.Returns: a
gnutls_sign_algorithm_t
value, or a negative error code on error.
resp: should contain a
gnutls_ocsp_resp_t
structureindx: Specifies response number to get. Use (0) to get the first one.
digest: output variable with
gnutls_digest_algorithm_t
hash algorithmissuer_name_hash: output buffer with hash of issuer's DN
issuer_key_hash: output buffer with hash of issuer's public key
serial_number: output buffer with serial number of certificate to check
cert_status: a certificate status, a
gnutls_ocsp_cert_status_t
enum.this_update: time at which the status is known to be correct.
next_update: when newer information will be available, or (time_t)-1 if unspecified
revocation_time: when
cert_status
isGNUTLS_OCSP_CERT_REVOKED
, holds time of revocation.revocation_reason: revocation reason, a
gnutls_x509_crl_reason_t
enum.This function will return the certificate information of the
indx
'ed response in the Basic OCSP Responseresp
. The information returned corresponds to the OCSP SingleResponse structure except the final singleExtensions.Each of the pointers to output variables may be NULL to indicate that the caller is not interested in that value.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned. If you have reached the last CertID availableGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.
resp: should contain a
gnutls_ocsp_resp_t
structureThis function will return the status of a OCSP response, an
gnutls_ocsp_resp_status_t
enumeration.Returns: status of OCSP request as a
gnutls_ocsp_resp_status_t
, or a negative error code on error.
resp: should contain a
gnutls_ocsp_resp_t
structureThis function will return the version of the Basic OCSP Response. Typically this is always 1 indicating version 1.
Returns: version of Basic OCSP response, or a negative error code on error.
resp: The structure to store the parsed response.
data: DER encoded OCSP response.
This function will convert the given DER encoded OCSP response to the native
gnutls_ocsp_resp_t
format. It also decodes the Basic OCSP Response part, if any. The output will be stored inresp
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
resp: The structure to be initialized
This function will initialize an OCSP response structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
resp: The structure to be printed
format: Indicate the format to use
out: Newly allocated datum with (0) terminated string.
This function will pretty print a OCSP response, suitable for display to a human.
If the format is
GNUTLS_OCSP_PRINT_FULL
then all fields of the response will be output, on multiple lines.The output
out
->data needs to be deallocate usinggnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
resp: should contain a
gnutls_ocsp_resp_t
structuretrustlist: trust anchors as a
gnutls_x509_trust_list_t
structureverify: output variable with verification status, an
gnutls_ocsp_cert_status_t
flags: verification flags, 0 for now.
Verify signature of the Basic OCSP Response against the public key in the certificate of a trusted signer. The
trustlist
should be populated with trust anchors. The function will extract the signer certificate from the Basic OCSP Response and will verify it against thetrustlist
. A trusted signer is a certificate that is either intrustlist
, or it is signed directly by a certificate intrustlist
and has the id-ad-ocspSigning Extended Key Usage bit set.The output
verify
variable will hold verification status codes (e.g.,GNUTLS_OCSP_VERIFY_SIGNER_NOT_FOUND
,GNUTLS_OCSP_VERIFY_INSECURE_ALGORITHM
) which are only valid if the function returnedGNUTLS_E_SUCCESS
.Note that the function returns
GNUTLS_E_SUCCESS
even when verification failed. The caller must always inspect theverify
variable to find out the verification status.The
flags
variable should be 0 for now.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
resp: should contain a
gnutls_ocsp_resp_t
structureissuer: certificate believed to have signed the response
verify: output variable with verification status, an
gnutls_ocsp_cert_status_t
flags: verification flags, 0 for now.
Verify signature of the Basic OCSP Response against the public key in the
issuer
certificate.The output
verify
variable will hold verification status codes (e.g.,GNUTLS_OCSP_VERIFY_SIGNER_NOT_FOUND
,GNUTLS_OCSP_VERIFY_INSECURE_ALGORITHM
) which are only valid if the function returnedGNUTLS_E_SUCCESS
.Note that the function returns
GNUTLS_E_SUCCESS
even when verification failed. The caller must always inspect theverify
variable to find out the verification status.The
flags
variable should be 0 for now.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
The following functions are to be used for OpenPGP certificate handling. Their prototypes lie in gnutls/openpgp.h.
res: is a
gnutls_certificate_credentials_t
structure.crt: contains an openpgp public key
pkey: is an openpgp private key
This function sets a certificate/private key pair in the gnutls_certificate_credentials_t structure. This function may be called more than once (in case multiple keys/certificates exist for the server).
Note that this function requires that the preferred key ids have been set and be used. See
gnutls_openpgp_crt_set_preferred_key_id()
. Otherwise the master key will be used.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
res: the destination context to save the data.
certfile: the file that contains the public key.
keyfile: the file that contains the secret key.
format: the format of the keys
This funtion is used to load OpenPGP keys into the GnuTLS credentials structure. The file should contain at least one valid non encrypted subkey.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
res: the destination context to save the data.
certfile: the file that contains the public key.
keyfile: the file that contains the secret key.
subkey_id: a hex encoded subkey id
format: the format of the keys
This funtion is used to load OpenPGP keys into the GnuTLS credential structure. The file should contain at least one valid non encrypted subkey.
The special keyword "auto" is also accepted as
subkey_id
. In that case thegnutls_openpgp_crt_get_auth_subkey()
will be used to retrieve the subkey.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.4.0
res: the destination context to save the data.
cert: the datum that contains the public key.
key: the datum that contains the secret key.
format: the format of the keys
This funtion is used to load OpenPGP keys into the GnuTLS credential structure. The datum should contain at least one valid non encrypted subkey.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
res: the destination context to save the data.
cert: the datum that contains the public key.
key: the datum that contains the secret key.
subkey_id: a hex encoded subkey id
format: the format of the keys
This funtion is used to load OpenPGP keys into the GnuTLS credentials structure. The datum should contain at least one valid non encrypted subkey.
The special keyword "auto" is also accepted as
subkey_id
. In that case thegnutls_openpgp_crt_get_auth_subkey()
will be used to retrieve the subkey.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.4.0
c: A certificate credentials structure
file: filename of the keyring.
format: format of keyring.
The function is used to set keyrings that will be used internally by various OpenPGP functions. For example to find a key when it is needed for an operations. The keyring will also be used at the verification functions.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
c: A certificate credentials structure
data: buffer with keyring data.
dlen: length of data buffer.
format: the format of the keyring
The function is used to set keyrings that will be used internally by various OpenPGP functions. For example to find a key when it is needed for an operations. The keyring will also be used at the verification functions.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: should contain a
gnutls_openpgp_crt_t
structurehostname: A null terminated string that contains a DNS name
This function will check if the given key's owner matches the given hostname. This is a basic implementation of the matching described in RFC2818 (HTTPS), which takes into account wildcards.
Returns: non-zero for a successful match, and zero on failure.
key: should contain a
gnutls_openpgp_crt_t
structurehostname: A null terminated string that contains a DNS name
flags: gnutls_certificate_verify_flags
This function will check if the given key's owner matches the given hostname.
Unless, the flag
GNUTLS_VERIFY_DO_NOT_ALLOW_WILDCARDS
is specified, wildcards are only considered if the domain name consists of three components or more, and the wildcard starts at the leftmost position.Returns: non-zero for a successful match, and zero on failure.
key: The structure to be initialized
This function will deinitialize a key structure.
key: Holds the key.
format: One of gnutls_openpgp_crt_fmt_t elements.
output_data: will contain the raw or base64 encoded key
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will convert the given key to RAW or Base64 format. If the buffer provided is not long enough to hold the output, then
GNUTLS_E_SHORT_MEMORY_BUFFER
will be returned.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
key: Holds the key.
format: One of gnutls_openpgp_crt_fmt_t elements.
out: will contain the raw or base64 encoded key
This function will convert the given key to RAW or Base64 format. The output buffer is allocated using
gnutls_malloc()
.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.Since: 3.1.3
crt: the structure that contains the OpenPGP public key.
keyid: the struct to save the keyid.
flag: Non-zero indicates that a valid subkey is always returned.
Returns the 64-bit keyID of the first valid OpenPGP subkey marked for authentication. If flag is non-zero and no authentication subkey exists, then a valid subkey will be returned even if it is not marked for authentication.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
key: the structure that contains the OpenPGP public key.
Get key creation time.
Returns: the timestamp when the OpenPGP key was created.
key: the structure that contains the OpenPGP public key.
Get key expiration time. A value of '0' means that the key doesn't expire at all.
Returns: the time when the OpenPGP key expires.
key: the raw data that contains the OpenPGP public key.
fpr: the buffer to save the fingerprint, must hold at least 20 bytes.
fprlen: the integer to save the length of the fingerprint.
Get key fingerprint. Depending on the algorithm, the fingerprint can be 16 or 20 bytes.
Returns: On success, 0 is returned. Otherwise, an error code.
key: the structure that contains the OpenPGP public key.
keyid: the buffer to save the keyid.
Get key id string.
Returns: the 64-bit keyID of the OpenPGP key.
Since: 2.4.0
key: should contain a gnutls_openpgp_crt_t structure
key_usage: where the key usage bits will be stored
This function will return certificate's key usage, by checking the key algorithm. The key usage value will ORed values of the:
GNUTLS_KEY_DIGITAL_SIGNATURE
,GNUTLS_KEY_KEY_ENCIPHERMENT
.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
key: the structure that contains the OpenPGP public key.
idx: the index of the ID to extract
buf: a pointer to a structure to hold the name, may be
NULL
to only get thesizeof_buf
.sizeof_buf: holds the maximum size of
buf
, on return hold the actual/required size ofbuf
.Extracts the userID from the parsed OpenPGP key.
Returns:
GNUTLS_E_SUCCESS
on success, and if the index of the ID does not existGNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
, or an error code.
key: is an OpenPGP key
bits: if bits is non null it will hold the size of the parameters' in bits
This function will return the public key algorithm of an OpenPGP certificate.
If bits is non null, it should have enough size to hold the parameters size in bits. For RSA the bits returned is the modulus. For DSA the bits returned are of the public exponent.
Returns: a member of the
gnutls_pk_algorithm_t
enumeration on success, or GNUTLS_PK_UNKNOWN on error.
crt: Holds the certificate
p: will hold the p
q: will hold the q
g: will hold the g
y: will hold the y
This function will export the DSA public key's parameters found in the given certificate. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 2.4.0
crt: Holds the certificate
m: will hold the modulus
e: will hold the public exponent
This function will export the RSA public key's parameters found in the given structure. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 2.4.0
key: the structure that contains the OpenPGP public key.
keyid: the struct to save the keyid.
Get preferred key id. If it hasn't been set it returns
GNUTLS_E_INVALID_REQUEST
.Returns: the 64-bit preferred keyID of the OpenPGP key.
key: the structure that contains the OpenPGP public key.
Get revocation status of key.
Returns: true (1) if the key has been revoked, or false (0) if it has not.
Since: 2.4.0
key: is an OpenPGP key
This function will return the number of subkeys present in the given OpenPGP certificate.
Returns: the number of subkeys, or a negative error code on error.
Since: 2.4.0
key: the structure that contains the OpenPGP public key.
idx: the subkey index
Get subkey creation time.
Returns: the timestamp when the OpenPGP sub-key was created.
Since: 2.4.0
key: the structure that contains the OpenPGP public key.
idx: the subkey index
Get subkey expiration time. A value of '0' means that the key doesn't expire at all.
Returns: the time when the OpenPGP key expires.
Since: 2.4.0
key: the raw data that contains the OpenPGP public key.
idx: the subkey index
fpr: the buffer to save the fingerprint, must hold at least 20 bytes.
fprlen: the integer to save the length of the fingerprint.
Get key fingerprint of a subkey. Depending on the algorithm, the fingerprint can be 16 or 20 bytes.
Returns: On success, 0 is returned. Otherwise, an error code.
Since: 2.4.0
key: the structure that contains the OpenPGP public key.
idx: the subkey index
keyid: the buffer to save the keyid.
Get the subkey's key-id.
Returns: the 64-bit keyID of the OpenPGP key.
key: the structure that contains the OpenPGP public key.
keyid: the keyid.
Get subkey's index.
Returns: the index of the subkey or a negative error value.
Since: 2.4.0
key: is an OpenPGP key
idx: is the subkey index
bits: if bits is non null it will hold the size of the parameters' in bits
This function will return the public key algorithm of a subkey of an OpenPGP certificate.
If bits is non null, it should have enough size to hold the parameters size in bits. For RSA the bits returned is the modulus. For DSA the bits returned are of the public exponent.
Returns: a member of the
gnutls_pk_algorithm_t
enumeration on success, or GNUTLS_PK_UNKNOWN on error.Since: 2.4.0
crt: Holds the certificate
idx: Is the subkey index
p: will hold the p
q: will hold the q
g: will hold the g
y: will hold the y
This function will export the DSA public key's parameters found in the given certificate. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 2.4.0
crt: Holds the certificate
idx: Is the subkey index
m: will hold the modulus
e: will hold the public exponent
This function will export the RSA public key's parameters found in the given structure. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 2.4.0
key: the structure that contains the OpenPGP public key.
idx: is the subkey index
Get subkey revocation status. A negative error code indicates an error.
Returns: true (1) if the key has been revoked, or false (0) if it has not.
Since: 2.4.0
key: should contain a gnutls_openpgp_crt_t structure
idx: the subkey index
key_usage: where the key usage bits will be stored
This function will return certificate's key usage, by checking the key algorithm. The key usage value will ORed values of
GNUTLS_KEY_DIGITAL_SIGNATURE
orGNUTLS_KEY_KEY_ENCIPHERMENT
.A negative error code may be returned in case of parsing error.
Returns: key usage value.
Since: 2.4.0
key: the structure that contains the OpenPGP public key.
Extract the version of the OpenPGP key.
Returns: the version number is returned, or a negative error code on errors.
key: The structure to store the parsed key.
data: The RAW or BASE64 encoded key.
format: One of gnutls_openpgp_crt_fmt_t elements.
This function will convert the given RAW or Base64 encoded key to the native
gnutls_openpgp_crt_t
format. The output will be stored in 'key'.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
key: The structure to be initialized
This function will initialize an OpenPGP key structure.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
cert: The structure to be printed
format: Indicate the format to use
out: Newly allocated datum with (0) terminated string.
This function will pretty print an OpenPGP certificate, suitable for display to a human.
The format should be (0) for future compatibility.
The output
out
needs to be deallocate usinggnutls_free()
.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
key: the structure that contains the OpenPGP public key.
keyid: the selected keyid
This allows setting a preferred key id for the given certificate. This key will be used by functions that involve key handling.
If the provided
keyid
isNULL
then the master key is set as preferred.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
key: the structure that holds the key.
keyring: holds the keyring to check against
flags: unused (should be 0)
verify: will hold the certificate verification output.
Verify all signatures in the key, using the given set of keys (keyring).
The key verification output will be put in
verify
and will be one or more of thegnutls_certificate_status_t
enumerated elements bitwise or'd.Note that this function does not verify using any "web of trust". You may use GnuPG for that purpose, or any other external PGP application.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
key: the structure that holds the key.
flags: unused (should be 0)
verify: will hold the key verification output.
Verifies the self signature in the key. The key verification output will be put in
verify
and will be one or more of the gnutls_certificate_status_t enumerated elements bitwise or'd.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
ring: holds the keyring to check against
keyid: will hold the keyid to check for.
flags: unused (should be 0)
Check if a given key ID exists in the keyring.
Returns:
GNUTLS_E_SUCCESS
on success (if keyid exists) and a negative error code on failure.
keyring: The structure to be initialized
This function will deinitialize a keyring structure.
ring: Holds the keyring.
idx: the index of the certificate to export
cert: An uninitialized
gnutls_openpgp_crt_t
structureThis function will extract an OpenPGP certificate from the given keyring. If the index given is out of range
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned. The returned structure needs to be deinited.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
ring: is an OpenPGP key ring
This function will return the number of OpenPGP certificates present in the given keyring.
Returns: the number of subkeys, or a negative error code on error.
keyring: The structure to store the parsed key.
data: The RAW or BASE64 encoded keyring.
format: One of
gnutls_openpgp_keyring_fmt
elements.This function will convert the given RAW or Base64 encoded keyring to the native
gnutls_openpgp_keyring_t
format. The output will be stored in 'keyring'.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
keyring: The structure to be initialized
This function will initialize an keyring structure.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
key: The structure to be initialized
This function will deinitialize a key structure.
key: Holds the key.
format: One of gnutls_openpgp_crt_fmt_t elements.
password: the password that will be used to encrypt the key. (unused for now)
flags: (0) for future compatibility
output_data: will contain the key base64 encoded or raw
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will convert the given key to RAW or Base64 format. If the buffer provided is not long enough to hold the output, then GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.Since: 2.4.0
key: Holds the key.
format: One of gnutls_openpgp_crt_fmt_t elements.
password: the password that will be used to encrypt the key. (unused for now)
flags: (0) for future compatibility
out: will contain the raw or based64 encoded key
This function will convert the given key to RAW or Base64 format. The output buffer is allocated using
gnutls_malloc()
.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.Since: 3.1.3
pkey: Holds the certificate
p: will hold the p
q: will hold the q
g: will hold the g
y: will hold the y
x: will hold the x
This function will export the DSA private key's parameters found in the given certificate. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 2.4.0
pkey: Holds the certificate
m: will hold the modulus
e: will hold the public exponent
d: will hold the private exponent
p: will hold the first prime (p)
q: will hold the second prime (q)
u: will hold the coefficient
This function will export the RSA private key's parameters found in the given structure. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 2.4.0
pkey: Holds the certificate
idx: Is the subkey index
p: will hold the p
q: will hold the q
g: will hold the g
y: will hold the y
x: will hold the x
This function will export the DSA private key's parameters found in the given certificate. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 2.4.0
pkey: Holds the certificate
idx: Is the subkey index
m: will hold the modulus
e: will hold the public exponent
d: will hold the private exponent
p: will hold the first prime (p)
q: will hold the second prime (q)
u: will hold the coefficient
This function will export the RSA private key's parameters found in the given structure. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 2.4.0
key: the raw data that contains the OpenPGP secret key.
fpr: the buffer to save the fingerprint, must hold at least 20 bytes.
fprlen: the integer to save the length of the fingerprint.
Get the fingerprint of the OpenPGP key. Depends on the algorithm, the fingerprint can be 16 or 20 bytes.
Returns: On success, 0 is returned, or an error code.
Since: 2.4.0
key: the structure that contains the OpenPGP secret key.
keyid: the buffer to save the keyid.
Get key-id.
Returns: the 64-bit keyID of the OpenPGP key.
Since: 2.4.0
key: is an OpenPGP key
bits: if bits is non null it will hold the size of the parameters' in bits
This function will return the public key algorithm of an OpenPGP certificate.
If bits is non null, it should have enough size to hold the parameters size in bits. For RSA the bits returned is the modulus. For DSA the bits returned are of the public exponent.
Returns: a member of the
gnutls_pk_algorithm_t
enumeration on success, or a negative error code on error.Since: 2.4.0
key: the structure that contains the OpenPGP public key.
keyid: the struct to save the keyid.
Get the preferred key-id for the key.
Returns: the 64-bit preferred keyID of the OpenPGP key, or if it hasn't been set it returns
GNUTLS_E_INVALID_REQUEST
.
key: the structure that contains the OpenPGP private key.
Get revocation status of key.
Returns: true (1) if the key has been revoked, or false (0) if it has not, or a negative error code indicates an error.
Since: 2.4.0
key: is an OpenPGP key
This function will return the number of subkeys present in the given OpenPGP certificate.
Returns: the number of subkeys, or a negative error code on error.
Since: 2.4.0
key: the structure that contains the OpenPGP private key.
idx: the subkey index
Get subkey creation time.
Returns: the timestamp when the OpenPGP key was created.
Since: 2.4.0
key: the structure that contains the OpenPGP private key.
idx: the subkey index
Get subkey expiration time. A value of '0' means that the key doesn't expire at all.
Returns: the time when the OpenPGP key expires.
Since: 2.4.0
key: the raw data that contains the OpenPGP secret key.
idx: the subkey index
fpr: the buffer to save the fingerprint, must hold at least 20 bytes.
fprlen: the integer to save the length of the fingerprint.
Get the fingerprint of an OpenPGP subkey. Depends on the algorithm, the fingerprint can be 16 or 20 bytes.
Returns: On success, 0 is returned, or an error code.
Since: 2.4.0
key: the structure that contains the OpenPGP secret key.
idx: the subkey index
keyid: the buffer to save the keyid.
Get the key-id for the subkey.
Returns: the 64-bit keyID of the OpenPGP key.
Since: 2.4.0
key: the structure that contains the OpenPGP private key.
keyid: the keyid.
Get index of subkey.
Returns: the index of the subkey or a negative error value.
Since: 2.4.0
key: is an OpenPGP key
idx: is the subkey index
bits: if bits is non null it will hold the size of the parameters' in bits
This function will return the public key algorithm of a subkey of an OpenPGP certificate.
If bits is non null, it should have enough size to hold the parameters size in bits. For RSA the bits returned is the modulus. For DSA the bits returned are of the public exponent.
Returns: a member of the
gnutls_pk_algorithm_t
enumeration on success, or a negative error code on error.Since: 2.4.0
key: the structure that contains the OpenPGP private key.
idx: is the subkey index
Get revocation status of key.
Returns: true (1) if the key has been revoked, or false (0) if it has not, or a negative error code indicates an error.
Since: 2.4.0
key: The structure to store the parsed key.
data: The RAW or BASE64 encoded key.
format: One of
gnutls_openpgp_crt_fmt_t
elements.password: not used for now
flags: should be (0)
This function will convert the given RAW or Base64 encoded key to the native gnutls_openpgp_privkey_t format. The output will be stored in 'key'.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
key: The structure to be initialized
This function will initialize an OpenPGP key structure.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
key: a key structure
This function will return the security parameter appropriate with this private key.
Returns: On success, a valid security parameter is returned otherwise
GNUTLS_SEC_PARAM_UNKNOWN
is returned.Since: 2.12.0
key: the structure that contains the OpenPGP public key.
keyid: the selected keyid
This allows setting a preferred key id for the given certificate. This key will be used by functions that involve key handling.
If the provided
keyid
isNULL
then the master key is set as preferred.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
session: a TLS session
func: the callback
This funtion will set a key retrieval function for OpenPGP keys. This callback is only useful in server side, and will be used if the peer sent a key fingerprint instead of a full key.
The retrieved key must be allocated using
gnutls_malloc()
.
The following functions are to be used for PKCS 12 handling. Their prototypes lie in gnutls/pkcs12.h.
bag: The bag
pass: The password used for encryption, must be ASCII.
This function will decrypt the given encrypted bag and return 0 on success.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
bag: The structure to be initialized
This function will deinitialize a PKCS12 Bag structure.
bag: The bag
pass: The password used for encryption, must be ASCII
flags: should be one of
gnutls_pkcs_encrypt_flags_t
elements bitwise or'dThis function will encrypt the given bag.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error code is returned.
bag: The bag
This function will return the number of the elements withing the bag.
Returns: Number of elements in bag, or an negative error code on error.
bag: The bag
indx: The element of the bag to get the data from
data: where the bag's data will be. Should be treated as constant.
This function will return the bag's data. The data is a constant that is stored into the bag. Should not be accessed after the bag is deleted.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
bag: The bag
indx: The bag's element to add the id
name: will hold a pointer to the name (to be treated as const)
This function will return the friendly name, of the specified bag element. The key ID is usually used to distinguish the local private key and the certificate pair.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value. or a negative error code on error.
bag: The bag
indx: The bag's element to add the id
id: where the ID will be copied (to be treated as const)
This function will return the key ID, of the specified bag element. The key ID is usually used to distinguish the local private key and the certificate pair.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value. or a negative error code on error.
bag: The bag
indx: The element of the bag to get the type
This function will return the bag's type.
Returns: One of the
gnutls_pkcs12_bag_type_t
enumerations.
bag: The structure to be initialized
This function will initialize a PKCS12 bag structure. PKCS12 Bags usually contain private keys, lists of X.509 Certificates and X.509 Certificate revocation lists.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
bag: The bag
crl: the CRL to be copied.
This function will insert the given CRL into the bag. This is just a wrapper over
gnutls_pkcs12_bag_set_data()
.Returns: the index of the added bag on success, or a negative error code on failure.
bag: The bag
crt: the certificate to be copied.
This function will insert the given certificate into the bag. This is just a wrapper over
gnutls_pkcs12_bag_set_data()
.Returns: the index of the added bag on success, or a negative value on failure.
bag: The bag
type: The data's type
data: the data to be copied.
This function will insert the given data of the given type into the bag.
Returns: the index of the added bag on success, or a negative value on error.
bag: The bag
indx: The bag's element to add the id
name: the name
This function will add the given key friendly name, to the specified, by the index, bag element. The name will be encoded as a 'Friendly name' bag attribute, which is usually used to set a user name to the local private key and the certificate pair.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value. or a negative error code on error.
bag: The bag
indx: The bag's element to add the id
id: the ID
This function will add the given key ID, to the specified, by the index, bag element. The key ID will be encoded as a 'Local key identifier' bag attribute, which is usually used to distinguish the local private key and the certificate pair.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value. or a negative error code on error.
pkcs12: The structure to be initialized
This function will deinitialize a PKCS12 structure.
pkcs12: Holds the pkcs12 structure
format: the format of output params. One of PEM or DER.
output_data: will contain a structure PEM or DER encoded
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will export the pkcs12 structure to DER or PEM format.
If the buffer provided is not long enough to hold the output, then *output_data_size will be updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.
If the structure is PEM encoded, it will have a header of "BEGIN PKCS12".
Returns: In case of failure a negative error code will be returned, and 0 on success.
pkcs12: Holds the pkcs12 structure
format: the format of output params. One of PEM or DER.
out: will contain a structure PEM or DER encoded
This function will export the pkcs12 structure to DER or PEM format.
The output buffer is allocated using
gnutls_malloc()
.If the structure is PEM encoded, it will have a header of "BEGIN PKCS12".
Returns: In case of failure a negative error code will be returned, and 0 on success.
Since: 3.1.3
pkcs12: should contain a gnutls_pkcs12_t structure
pass: The password for the MAC
This function will generate a MAC for the PKCS12 structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
pkcs12: should contain a gnutls_pkcs12_t structure
indx: contains the index of the bag to extract
bag: An initialized bag, where the contents of the bag will be copied
This function will return a Bag from the PKCS12 structure.
After the last Bag has been read
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
will be returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
pkcs12: The structure to store the parsed PKCS12.
data: The DER or PEM encoded PKCS12.
format: One of DER or PEM
flags: an ORed sequence of gnutls_privkey_pkcs8_flags
This function will convert the given DER or PEM encoded PKCS12 to the native gnutls_pkcs12_t format. The output will be stored in 'pkcs12'.
If the PKCS12 is PEM encoded it should have a header of "PKCS12".
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
pkcs12: The structure to be initialized
This function will initialize a PKCS12 structure. PKCS12 structures usually contain lists of X.509 Certificates and X.509 Certificate revocation lists.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
pkcs12: should contain a gnutls_pkcs12_t structure
bag: An initialized bag
This function will insert a Bag into the PKCS12 structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
p12: the PKCS12 blob.
password: optional password used to decrypt PKCS12 blob, bags and keys.
key: a structure to store the parsed private key.
chain: the corresponding to key certificate chain (may be
NULL
)chain_len: will be updated with the number of additional (may be
NULL
)extra_certs: optional pointer to receive an array of additional certificates found in the PKCS12 blob (may be
NULL
).extra_certs_len: will be updated with the number of additional certs (may be
NULL
).crl: an optional structure to store the parsed CRL (may be
NULL
).flags: should be zero or one of GNUTLS_PKCS12_SP_*
This function parses a PKCS12 blob in
p12blob
and extracts the private key, the corresponding certificate chain, any additional certificates and a CRL.The
extra_certs
andextra_certs_len
parameters are optional and both may be set toNULL
. If either is non-NULL
, then both must be set. The value forextra_certs
is allocated usinggnutls_malloc()
.Encrypted PKCS12 bags and PKCS8 private keys are supported, but only with password based security and the same password for all operations.
Note that a PKCS12 file may contain many keys and/or certificates, and there is no way to identify which key/certificate pair you want. For this reason this function is useful for PKCS12 files that contain only one key/certificate pair and/or one CRL.
If the provided structure has encrypted fields but no password is provided then this function returns
GNUTLS_E_DECRYPTION_FAILED
.Note that normally the chain constructed does not include self signed certificates, to comply with TLS' requirements. If, however, the flag
GNUTLS_PKCS12_SP_INCLUDE_SELF_SIGNED
is specified then self signed certificates will be included in the chain.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
pkcs12: should contain a gnutls_pkcs12_t structure
pass: The password for the MAC
This function will verify the MAC for the PKCS12 structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
The following functions are to be used for PKCS 11 handling. Their prototypes lie in gnutls/pkcs11.h.
name: The filename of the module
params: should be NULL
This function will load and add a PKCS 11 module to the module list used in gnutls. After this function is called the module will be used for PKCS 11 operations.
When loading a module to be used for certificate verification, use the string 'trusted' as
params
.Note that this function is not thread safe.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
token_url: A PKCS
11
URL specifying a tokenkey: The raw key
label: A name to be used for the stored data
key_usage: One of GNUTLS_KEY_*
flags: One of GNUTLS_PKCS11_OBJ_FLAG_*
This function will copy a raw secret (symmetric) key into a PKCS
11
token specified by a URL. The key can be marked as sensitive or not.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
token_url: A PKCS
11
URL specifying a tokencrt: A certificate
label: A name to be used for the stored data
flags: One of GNUTLS_PKCS11_OBJ_FLAG_*
This function will copy a certificate into a PKCS
11
token specified by a URL. The certificate can be marked as trusted or not.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
token_url: A PKCS
11
URL specifying a tokenkey: A private key
label: A name to be used for the stored data
key_usage: One of GNUTLS_KEY_*
flags: One of GNUTLS_PKCS11_OBJ_* flags
This function will copy a private key into a PKCS
11
token specified by a URL. It is highly recommended flags to containGNUTLS_PKCS11_OBJ_FLAG_MARK_SENSITIVE
unless there is a strong reason not to.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
url: A PKCS 11 url identifying a token
cert: is the certificate to find issuer for
flags: Use zero or flags from
GNUTLS_PKCS11_OBJ_FLAG
.This function will check whether the provided certificate is stored in the specified token. This is useful in combination with
GNUTLS_PKCS11_OBJ_FLAG_RETRIEVE_TRUSTED
orGNUTLS_PKCS11_OBJ_FLAG_RETRIEVE_DISTRUSTED
, to check whether a CA is present or a certificate is blacklisted in a trust PKCS11
module.This function can be used with a
url
of "pkcs11:", and in that case all modules will be searched. To restrict the modules to the marked as trusted in p11-kit use theGNUTLS_PKCS11_OBJ_FLAG_PRESENT_IN_TRUSTED_MODULE
flag.Note that the flag
GNUTLS_PKCS11_OBJ_FLAG_RETRIEVE_DISTRUSTED
is specific to p11-kit trust modules.Returns: If the certificate exists non-zero is returned, otherwise zero.
Since: 3.3.0
This function will deinitialize the PKCS 11 subsystem in gnutls. This function is only needed if you need to deinitialize the subsystem without calling
gnutls_global_deinit()
.Since: 2.12.0
object_url: The URL of the object to delete.
flags: One of GNUTLS_PKCS11_OBJ_* flags
This function will delete objects matching the given URL. Note that not all tokens support the delete operation.
Returns: On success, the number of objects deleted is returned, otherwise a negative error value.
Since: 2.12.0
userdata: data to be supplied to callback
This function will return the callback function set using
gnutls_pkcs11_set_pin_function()
.Returns: The function set or NULL otherwise.
Since: 3.1.0
url: A PKCS 11 url identifying a token
cert: is the certificate to find issuer for
issuer: Will hold the issuer if any in an allocated buffer.
fmt: The format of the exported issuer.
flags: Use zero or flags from
GNUTLS_PKCS11_OBJ_FLAG
.This function will return the issuer of a given certificate, if it is stored in the token. By default only marked as trusted issuers are retuned. If any issuer should be returned specify
GNUTLS_PKCS11_OBJ_FLAG_RETRIEVE_ANY
inflags
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.2.7
flags: An ORed sequence of
GNUTLS_PKCS11_FLAG_
*deprecated_config_file: either NULL or the location of a deprecated configuration file
This function will initialize the PKCS 11 subsystem in gnutls. It will read configuration files if
GNUTLS_PKCS11_FLAG_AUTO
is used or allow you to independently load PKCS 11 modules usinggnutls_pkcs11_add_provider()
ifGNUTLS_PKCS11_FLAG_MANUAL
is specified.Normally you don't need to call this function since it is being called when the first PKCS 11 operation is requested using the
GNUTLS_PKCS11_FLAG_AUTO
flag. If another flags are required then it must be called independently prior to any PKCS 11 operation.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
obj: The structure to be initialized
This function will deinitialize a certificate structure.
Since: 2.12.0
obj: Holds the object
output_data: will contain the object data
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will export the PKCS11 object data. It is normal for data to be inaccesible and in that case
GNUTLS_E_INVALID_REQUEST
will be returned.If the buffer provided is not long enough to hold the output, then *output_data_size is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.
Returns: In case of failure a negative error code will be returned, and
GNUTLS_E_SUCCESS
(0) on success.Since: 2.12.0
obj: Holds the object
out: will contain the object data
This function will export the PKCS11 object data. It is normal for data to be inaccesible and in that case
GNUTLS_E_INVALID_REQUEST
will be returned.The output buffer is allocated using
gnutls_malloc()
.Returns: In case of failure a negative error code will be returned, and
GNUTLS_E_SUCCESS
(0) on success.Since: 3.1.3
obj: Holds the object
fmt: The format of the exported data
out: will contain the object data
This function will export the PKCS11 object data. It is normal for data to be inaccesible and in that case
GNUTLS_E_INVALID_REQUEST
will be returned.The output buffer is allocated using
gnutls_malloc()
.Returns: In case of failure a negative error code will be returned, and
GNUTLS_E_SUCCESS
(0) on success.Since: 3.2.7
obj: Holds the PKCS 11 certificate
detailed: non zero if a detailed URL is required
url: will contain an allocated url
This function will export a URL identifying the given certificate.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
flags: holds the flags
This function given an or-sequence of
GNUTLS_PKCS11_OBJ_FLAG_MARK
, will return an allocated string with its description. The string needs to be deallocated usinggnutls_free()
.Returns: If flags is zero
NULL
is returned, otherwise an allocated string.Since: 3.3.7
obj: should contain a
gnutls_pkcs11_obj_t
structureexts: an allocated list of pointers to
gnutls_x509_ext_st
exts_size: the number of
exts
flags: Or sequence of
GNUTLS_PKCS11_OBJ_
* flagsThis function will return information about attached extensions that associate to the provided object (which should be a certificate). The extensions are the attached p11-kit trust module extensions.
Returns:
GNUTLS_E_SUCCESS
(0) on success or a negative error code on error.Since: 3.3.8
obj: The structure that holds the object
oflags: Will hold the output flags
This function will return the flags of the object being stored in the structure. The
oflags
are theGNUTLS_PKCS11_OBJ_FLAG_MARK
flags.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.7
obj: should contain a
gnutls_pkcs11_obj_t
structureitype: Denotes the type of information requested
output: where output will be stored
output_size: contains the maximum size of the output and will be overwritten with actual
This function will return information about the PKCS11 certificate such as the label, id as well as token information where the key is stored. When output is text it returns null terminated string although
output_size
contains the size of the actual data only.Returns:
GNUTLS_E_SUCCESS
(0) on success or a negative error code on error.Since: 2.12.0
obj: Holds the PKCS 11 object
This function will return the type of the object being stored in the structure.
Returns: The type of the object
Since: 2.12.0
obj: The structure to store the object
url: a PKCS 11 url identifying the key
flags: Or sequence of GNUTLS_PKCS11_OBJ_* flags
This function will "import" a PKCS 11 URL identifying an object (e.g. certificate) to the
gnutls_pkcs11_obj_t
structure. This does not involve any parsing (such as X.509 or OpenPGP) since thegnutls_pkcs11_obj_t
is format agnostic. Only data are transferred.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
obj: The structure to be initialized
This function will initialize a pkcs11 certificate structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
p_list: An uninitialized object list (may be NULL)
n_list: initially should hold the maximum size of the list. Will contain the actual size.
url: A PKCS 11 url identifying a set of objects
attrs: Attributes of type
gnutls_pkcs11_obj_attr_t
that can be used to limit outputflags: Or sequence of GNUTLS_PKCS11_OBJ_* flags
This function will initialize and set values to an object list by using all objects identified by a PKCS 11 URL.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
p_list: An uninitialized object list (may be NULL)
n_list: It will contain the size of the list.
url: A PKCS 11 url identifying a set of objects
attrs: Attributes of type
gnutls_pkcs11_obj_attr_t
that can be used to limit outputflags: Or sequence of GNUTLS_PKCS11_OBJ_* flags
This function will initialize and set values to an object list by using all objects identified by the PKCS 11 URL. The output is stored in
p_list
, which will be initialized.All returned objects must be deinitialized using
gnutls_pkcs11_obj_deinit()
, andp_list
must be free'd usinggnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
obj: The object structure
fn: the callback
userdata: data associated with the callback
This function will set a callback function to be used when required to access the object. This function overrides the global set using
gnutls_pkcs11_set_pin_function()
.Since: 3.1.0
key: The structure to be initialized
This function will deinitialize a private key structure.
pkey: The private key
fmt: the format of output params. PEM or DER.
data: will hold the public key
flags: should be zero
This function will extract the public key (modulus and public exponent) from the private key specified by the
url
private key. This public key will be stored inpubkey
in the format specified byfmt
.pubkey
should be deinitialized usinggnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.7
key: Holds the PKCS 11 key
detailed: non zero if a detailed URL is required
url: will contain an allocated url
This function will export a URL identifying the given key.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
url: a token URL
pk: the public key algorithm
bits: the security bits
label: a label
flags: should be zero
This function will generate a private key in the specified by the
url
token. The private key will be generate within the token and will not be exportable.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
url: a token URL
pk: the public key algorithm
bits: the security bits
label: a label
fmt: the format of output params. PEM or DER.
pubkey: will hold the public key (may be
NULL
)flags: zero or an OR'ed sequence of
GNUTLS_PKCS11_OBJ_FLAGs
This function will generate a private key in the specified by the
url
token. The private key will be generate within the token and will not be exportable. This function will store the DER-encoded public key in the SubjectPublicKeyInfo format inpubkey
. Thepubkey
should be deinitialized usinggnutls_free()
.Note that when generating an elliptic curve key, the curve can be substituted in the place of the bits parameter using the
GNUTLS_CURVE_TO_BITS()
macro.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.5
pkey: should contain a
gnutls_pkcs11_privkey_t
structureitype: Denotes the type of information requested
output: where output will be stored
output_size: contains the maximum size of the output and will be overwritten with actual
This function will return information about the PKCS 11 private key such as the label, id as well as token information where the key is stored. When output is text it returns null terminated string although
output_size
contains the size of the actual data only.Returns:
GNUTLS_E_SUCCESS
(0) on success or a negative error code on error.
key: should contain a
gnutls_pkcs11_privkey_t
structurebits: if bits is non null it will hold the size of the parameters' in bits
This function will return the public key algorithm of a private key.
Returns: a member of the
gnutls_pk_algorithm_t
enumeration on success, or a negative error code on error.
pkey: The structure to store the parsed key
url: a PKCS 11 url identifying the key
flags: Or sequence of GNUTLS_PKCS11_OBJ_* flags
This function will "import" a PKCS 11 URL identifying a private key to the
gnutls_pkcs11_privkey_t
structure. In reality since in most cases keys cannot be exported, the private key structure is being associated with the available operations on the token.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: The structure to be initialized
This function will initialize an private key structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: The private key
fn: the callback
userdata: data associated with the callback
This function will set a callback function to be used when required to access the object. This function overrides the global set using
gnutls_pkcs11_set_pin_function()
.Since: 3.1.0
key: Holds the key
Checks the status of the private key token.
Returns: this function will return non-zero if the token holding the private key is still available (inserted), and zero otherwise.
Since: 3.1.9
This function will reinitialize the PKCS 11 subsystem in gnutls. This is required by PKCS 11 when an application uses
fork()
. The reinitialization function must be called on the child.Note that since GnuTLS 3.3.0, the reinitialization of the PKCS
11
subsystem occurs automatically after fork.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
fn: The PIN callback, a
gnutls_pin_callback_t()
function.userdata: data to be supplied to callback
This function will set a callback function to be used when a PIN is required for PKCS 11 operations. See
gnutls_pin_callback_t()
on how the callback should behave.Since: 2.12.0
fn: The token callback
userdata: data to be supplied to callback
This function will set a callback function to be used when a token needs to be inserted to continue PKCS 11 operations.
Since: 2.12.0
url: should contain a PKCS 11 URL
flags: The output flags (GNUTLS_PKCS11_TOKEN_*)
This function will return information about the PKCS 11 token flags.
The supported flags are:
GNUTLS_PKCS11_TOKEN_HW
andGNUTLS_PKCS11_TOKEN_TRUSTED
.Returns:
GNUTLS_E_SUCCESS
(0) on success or a negative error code on error.Since: 2.12.0
url: should contain a PKCS 11 URL
ttype: Denotes the type of information requested
output: where output will be stored
output_size: contains the maximum size of the output and will be overwritten with actual
This function will return information about the PKCS 11 token such as the label, id, etc.
Returns:
GNUTLS_E_SUCCESS
(0) on success or a negative error code on error.Since: 2.12.0
url: should contain a PKCS 11 URL
idx: The index of the mechanism
mechanism: The PKCS
11
mechanism IDThis function will return the names of the supported mechanisms by the token. It should be called with an increasing index until it return GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE.
Returns:
GNUTLS_E_SUCCESS
(0) on success or a negative error code on error.Since: 2.12.0
token_url: A PKCS
11
URL specifying a tokenrnddata: A pointer to the memory area to be filled with random data
len: The number of bytes of randomness to request
This function will get random data from the given token. It will store rnddata and fill the memory pointed to by rnddata with len random bytes from the token.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
seq: sequence number starting from 0
detailed: non zero if a detailed URL is required
url: will contain an allocated url
This function will return the URL for each token available in system. The url has to be released using
gnutls_free()
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned,GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
if the sequence number exceeds the available tokens, otherwise a negative error value.Since: 2.12.0
token_url: A PKCS
11
URL specifying a tokenso_pin: Security Officer's PIN
label: A name to be used for the token
This function will initialize (format) a token. If the token is at a factory defaults state the security officer's PIN given will be set to be the default. Otherwise it should match the officer's PIN.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
token_url: A PKCS
11
URL specifying a tokenoldpin: old user's PIN
newpin: new user's PIN
flags: one of
gnutls_pin_flag_t
.This function will modify or set a user's PIN for the given token. If it is called to set a user pin for first time the oldpin must be NULL.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
type: Holds the PKCS 11 object type, a
gnutls_pkcs11_obj_type_t
.This function will return a human readable description of the PKCS11 object type
obj
. It will return "Unknown" for unknown types.Returns: human readable string labeling the PKCS11 object type
type
.Since: 2.12.0
crt: A certificate of type
gnutls_x509_crt_t
pkcs11_crt: A PKCS 11 object that contains a certificate
This function will import a PKCS 11 certificate to a
gnutls_x509_crt_t
structure.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
crt: A certificate of type
gnutls_x509_crt_t
url: A PKCS 11 url
flags: One of GNUTLS_PKCS11_OBJ_* flags
This function will import a PKCS 11 certificate directly from a token without involving the
gnutls_pkcs11_obj_t
structure. This function will fail if the certificate stored is not of X.509 type.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
certs: A list of certificates of type
gnutls_x509_crt_t
cert_max: The maximum size of the list
objs: A list of PKCS 11 objects
flags: 0 for now
This function will import a PKCS 11 certificate list to a list of
gnutls_x509_crt_t
structure. These must not be initialized.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
The following functions are to be used for TPM handling. Their prototypes lie in gnutls/tpm.h.
list: a list to store the keys
This function will get a list of stored keys in the TPM. The uuid of those keys
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
list: a list of the keys
This function will deinitialize the list of stored keys in the TPM.
Since: 3.1.0
list: a list of the keys
idx: The index of the key (starting from zero)
url: The URL to be returned
flags: should be zero
This function will return for each given index a URL of the corresponding key. If the provided index is out of bounds then
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
url: the URL describing the key
srk_password: a password for the SRK key
This function will unregister the private key from the TPM chip.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
pk: the public key algorithm
bits: the security bits
srk_password: a password to protect the exported key (optional)
key_password: the password for the TPM (optional)
format: the format of the private key
pub_format: the format of the public key
privkey: the generated key
pubkey: the corresponding public key (may be null)
flags: should be a list of GNUTLS_TPM_* flags
This function will generate a private key in the TPM chip. The private key will be generated within the chip and will be exported in a wrapped with TPM's master key form. Furthermore the wrapped key can be protected with the provided
password
.Note that bits in TPM is quantized value. If the input value is not one of the allowed values, then it will be quantized to one of 512, 1024, 2048, 4096, 8192 and 16384.
Allowed flags are:
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
The following functions are to be used for abstract key handling. Their prototypes lie in gnutls/abstract.h.
res: is a
gnutls_certificate_credentials_t
structure.names: is an array of DNS name of the certificate (NULL if none)
names_size: holds the size of the names list
pcert_list: contains a certificate list (path) for the specified private key
pcert_list_size: holds the size of the certificate list
key: is a
gnutls_privkey_t
keyThis function sets a certificate/private key pair in the gnutls_certificate_credentials_t structure. This function may be called more than once, in case multiple keys/certificates exist for the server. For clients that wants to send more than its own end entity certificate (e.g., also an intermediate CA cert) then put the certificate chain in
pcert_list
.Note that the
pcert_list
andkey
will become part of the credentials structure and must not be deallocated. They will be automatically deallocated when theres
structure is deinitialized.Returns:
GNUTLS_E_SUCCESS
(0) on success, or a negative error code.Since: 3.0
cred: is a
gnutls_certificate_credentials_t
structure.func: is the callback function
This function sets a callback to be called in order to retrieve the certificate to be used in the handshake.
The callback's function prototype is: int (*callback)(gnutls_session_t, const gnutls_datum_t* req_ca_dn, int nreqs, const gnutls_pk_algorithm_t* pk_algos, int pk_algos_length, gnutls_pcert_st** pcert, unsigned int *pcert_length, gnutls_privkey_t * pkey);
req_ca_cert
is only used in X.509 certificates. Contains a list with the CA names that the server considers trusted. Normally we should send a certificate that is signed by one of these CAs. These names are DER encoded. To get a more meaningful value use the functiongnutls_x509_rdn_get()
.
pk_algos
contains a list with server's acceptable signature algorithms. The certificate returned should support the server's given algorithms.
pcert
should contain a single certificate and public or a list of them.
pcert_length
is the size of the previous list.
pkey
is the private key.If the callback function is provided then gnutls will call it, in the handshake, after the certificate request message has been received.
In server side pk_algos and req_ca_dn are NULL.
The callback function should set the certificate list to be sent, and return 0 on success. If no certificate was selected then the number of certificates should be set to zero. The value (-1) indicates error and the handshake will be terminated.
Since: 3.0
pcert: The structure to be deinitialized
This function will deinitialize a pcert structure.
Since: 3.0
pcert: The pcert structure
crt: The raw certificate to be imported
flags: zero for now
This convenience function will import the given certificate to a
gnutls_pcert_st
structure. The structure must be deinitialized afterwards usinggnutls_pcert_deinit()
;Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
pcert: The pcert structure
cert: The raw certificate to be imported
format: The format of the certificate
keyid: The key ID to use (NULL for the master key)
flags: zero for now
This convenience function will import the given certificate to a
gnutls_pcert_st
structure. The structure must be deinitialized afterwards usinggnutls_pcert_deinit()
;Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
pcert: The pcert structure
crt: The raw certificate to be imported
flags: zero for now
This convenience function will import the given certificate to a
gnutls_pcert_st
structure. The structure must be deinitialized afterwards usinggnutls_pcert_deinit()
;Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
pcert: The pcert structure
cert: The raw certificate to be imported
format: The format of the certificate
flags: zero for now
This convenience function will import the given certificate to a
gnutls_pcert_st
structure. The structure must be deinitialized afterwards usinggnutls_pcert_deinit()
;Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
pcerts: The structures to store the parsed certificate. Must not be initialized.
pcert_max: Initially must hold the maximum number of certs. It will be updated with the number of certs available.
data: The certificates.
format: One of DER or PEM.
flags: must be (0) or an OR'd sequence of gnutls_certificate_import_flags.
This function will convert the given PEM encoded certificate list to the native gnutls_x509_crt_t format. The output will be stored in
certs
. They will be automatically initialized.If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE", or "CERTIFICATE".
Returns: the number of certificates read or a negative error value.
Since: 3.0
key: Holds the key
flags: zero for now
ciphertext: holds the data to be decrypted
plaintext: will contain the decrypted data, allocated with
gnutls_malloc()
This function will decrypt the given data using the algorithm supported by the private key.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
key: The structure to be deinitialized
This function will deinitialize a private key structure.
Since: 2.12.0
key: Holds the public key
p: will hold the p
q: will hold the q
g: will hold the g
y: will hold the y
x: will hold the x
This function will export the DSA private key's parameters found in the given structure. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 3.3.0
key: Holds the public key
curve: will hold the curve
x: will hold the x coordinate
y: will hold the y coordinate
k: will hold the private key
This function will export the ECC private key's parameters found in the given structure. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 3.3.0
key: Holds the certificate
m: will hold the modulus
e: will hold the public exponent
d: will hold the private exponent
p: will hold the first prime (p)
q: will hold the second prime (q)
u: will hold the coefficient
e1: will hold e1 = d mod (p-1)
e2: will hold e2 = d mod (q-1)
This function will export the RSA private key's parameters found in the given structure. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 3.3.0
pkey: The private key
algo: is one of the algorithms in
gnutls_pk_algorithm_t
.bits: the size of the modulus
flags: unused for now. Must be 0.
This function will generate a random private key. Note that this function must be called on an empty private key.
Note that when generating an elliptic curve key, the curve can be substituted in the place of the bits parameter using the
GNUTLS_CURVE_TO_BITS()
macro.Do not set the number of bits directly, use
gnutls_sec_param_to_pk_bits()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
key: should contain a
gnutls_privkey_t
structurebits: If set will return the number of bits of the parameters (may be NULL)
This function will return the public key algorithm of a private key and if possible will return a number of bits that indicates the security parameter of the key.
Returns: a member of the
gnutls_pk_algorithm_t
enumeration on success, or a negative error code on error.Since: 2.12.0
key: should contain a
gnutls_privkey_t
structureThis function will return the type of the private key. This is actually the type of the subsystem used to set this private key.
Returns: a member of the
gnutls_privkey_type_t
enumeration on success, or a negative error code on error.Since: 2.12.0
key: The structure to store the parsed key
p: holds the p
q: holds the q
g: holds the g
y: holds the y
x: holds the x
This function will convert the given DSA raw parameters to the native
gnutls_privkey_t
format. The output will be stored inkey
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
key: The structure to store the parsed key
curve: holds the curve
x: holds the x
y: holds the y
k: holds the k
This function will convert the given elliptic curve parameters to the native
gnutls_privkey_t
format. The output will be stored inkey
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
pkey: The private key
pk: The public key algorithm
userdata: private data to be provided to the callbacks
sign_func: callback for signature operations
decrypt_func: callback for decryption operations
flags: Flags for the import
This function will associate the given callbacks with the
gnutls_privkey_t
structure. At least one of the two callbacks must be non-null.See also
gnutls_privkey_import_ext2()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
pkey: The private key
pk: The public key algorithm
userdata: private data to be provided to the callbacks
sign_func: callback for signature operations
decrypt_func: callback for decryption operations
deinit_func: a deinitialization function
flags: Flags for the import
This function will associate the given callbacks with the
gnutls_privkey_t
structure. At least one of the two callbacks must be non-null. If a deinitialization function is provided then flags is assumed to containGNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE
.Note that the signing function is supposed to "raw" sign data, i.e., without any hashing or preprocessing. In case of RSA the DigestInfo will be provided, and the signing function is expected to do the PKCS
1
1.5 padding and the exponentiation.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1
pkey: The private key
key: The private key to be imported
flags: Flags for the import
This function will import the given private key to the abstract
gnutls_privkey_t
structure.The
gnutls_openpgp_privkey_t
object must not be deallocated during the lifetime of this structure. The subkey set as preferred will be used, or the master key otherwise.
flags
might be zero or one ofGNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE
andGNUTLS_PRIVKEY_IMPORT_COPY
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
pkey: The private key
data: The private key data to be imported
format: The format of the private key
keyid: The key id to use (optional)
password: A password (optional)
This function will import the given private key to the abstract
gnutls_privkey_t
structure.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
pkey: The private key
key: The private key to be imported
flags: Flags for the import
This function will import the given private key to the abstract
gnutls_privkey_t
structure.The
gnutls_pkcs11_privkey_t
object must not be deallocated during the lifetime of this structure.
flags
might be zero or one ofGNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE
andGNUTLS_PRIVKEY_IMPORT_COPY
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
key: A key of type
gnutls_pubkey_t
url: A PKCS 11 url
This function will import a PKCS 11 private key to a
gnutls_private_key_t
structure.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
key: The structure to store the parsed key
m: holds the modulus
e: holds the public exponent
d: holds the private exponent
p: holds the first prime (p)
q: holds the second prime (q)
u: holds the coefficient (optional)
e1: holds e1 = d mod (p-1) (optional)
e2: holds e2 = d mod (q-1) (optional)
This function will convert the given RSA raw parameters to the native
gnutls_privkey_t
format. The output will be stored inkey
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
pkey: The private key
fdata: The TPM key to be imported
format: The format of the private key
srk_password: The password for the SRK key (optional)
key_password: A password for the key (optional)
flags: should be zero
This function will import the given private key to the abstract
gnutls_privkey_t
structure.With respect to passwords the same as in
gnutls_privkey_import_tpm_url()
apply.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
pkey: The private key
url: The URL of the TPM key to be imported
srk_password: The password for the SRK key (optional)
key_password: A password for the key (optional)
flags: One of the GNUTLS_PRIVKEY_* flags
This function will import the given private key to the abstract
gnutls_privkey_t
structure.Note that unless
GNUTLS_PRIVKEY_DISABLE_CALLBACKS
is specified, if incorrect (or NULL) passwords are given the PKCS11 callback functions will be used to obtain the correct passwords. Otherwise if the SRK password is wrongGNUTLS_E_TPM_SRK_PASSWORD_ERROR
is returned and if the key password is wrong or not provided thenGNUTLS_E_TPM_KEY_PASSWORD_ERROR
is returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
key: A key of type
gnutls_privkey_t
url: A PKCS 11 url
flags: should be zero
This function will import a PKCS11 or TPM URL as a private key. The supported URL types can be checked using
gnutls_url_is_supported()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
pkey: The private key
key: The private key to be imported
flags: Flags for the import
This function will import the given private key to the abstract
gnutls_privkey_t
structure.The
gnutls_x509_privkey_t
object must not be deallocated during the lifetime of this structure.
flags
might be zero or one ofGNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE
andGNUTLS_PRIVKEY_IMPORT_COPY
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
pkey: The private key
data: The private key data to be imported
format: The format of the private key
password: A password (optional)
flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t
This function will import the given private key to the abstract
gnutls_privkey_t
structure.The supported formats are basic unencrypted key, PKCS8, PKCS12, and the openssl format.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
key: The structure to be initialized
This function will initialize an private key structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
key: A key of type
gnutls_privkey_t
fn: the callback
userdata: data associated with the callback
This function will set a callback function to be used when required to access the object. This function overrides any other global PIN functions.
Note that this function must be called right after initialization to have effect.
Since: 3.1.0
signer: Holds the key
hash: should be a digest algorithm
flags: Zero or one of
gnutls_privkey_flags_t
data: holds the data to be signed
signature: will contain the signature allocate with
gnutls_malloc()
This function will sign the given data using a signature algorithm supported by the private key. Signature algorithms are always used together with a hash functions. Different hash functions may be used for the RSA algorithm, but only the SHA family for the DSA keys.
You may use
gnutls_pubkey_get_preferred_hash_algorithm()
to determine the hash algorithm.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
signer: Holds the signer's key
hash_algo: The hash algorithm used
flags: Zero or one of
gnutls_privkey_flags_t
hash_data: holds the data to be signed
signature: will contain newly allocated signature
This function will sign the given hashed data using a signature algorithm supported by the private key. Signature algorithms are always used together with a hash functions. Different hash functions may be used for the RSA algorithm, but only SHA-XXX for the DSA keys.
You may use
gnutls_pubkey_get_preferred_hash_algorithm()
to determine the hash algorithm.Note that if
GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA
flag is specified this function will ignorehash_algo
and perform a raw PKCS1 signature.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
key: Holds the key
Checks the status of the private key token. This function is an actual wrapper over
gnutls_pkcs11_privkey_status()
, and if the private key is a PKCS11
token it will check whether it is inserted or not.Returns: this function will return non-zero if the token holding the private key is still available (inserted), and zero otherwise.
Since: 3.1.10
key: should contain a
gnutls_privkey_t
structureThis function will verify the private key parameters.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
key: The structure to be deinitialized
This function will deinitialize a public key structure.
Since: 2.12.0
key: Holds the public key
flags: should be 0 for now
plaintext: The data to be encrypted
ciphertext: contains the encrypted data
This function will encrypt the given data, using the public key.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
key: Holds the certificate
format: the format of output params. One of PEM or DER.
output_data: will contain a certificate PEM or DER encoded
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will export the public key to DER or PEM format. The contents of the exported data is the SubjectPublicKeyInfo X.509 structure.
If the buffer provided is not long enough to hold the output, then *output_data_size is updated and
GNUTLS_E_SHORT_MEMORY_BUFFER
will be returned.If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".
Returns: In case of failure a negative error code will be returned, and 0 on success.
Since: 2.12.0
key: Holds the certificate
format: the format of output params. One of PEM or DER.
out: will contain a certificate PEM or DER encoded
This function will export the public key to DER or PEM format. The contents of the exported data is the SubjectPublicKeyInfo X.509 structure.
The output buffer will be allocated using
gnutls_malloc()
.If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".
Returns: In case of failure a negative error code will be returned, and 0 on success.
Since: 3.1.3
key: Holds the public key
p: will hold the p
q: will hold the q
g: will hold the g
y: will hold the y
This function will export the DSA public key's parameters found in the given certificate. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 3.3.0
key: Holds the public key
curve: will hold the curve
x: will hold x
y: will hold y
This function will export the ECC public key's parameters found in the given certificate. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 3.0
key: Holds the public key
parameters: DER encoding of an ANSI X9.62 parameters
ecpoint: DER encoding of ANSI X9.62 ECPoint
This function will export the ECC public key's parameters found in the given certificate. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 3.3.0
key: Holds the certificate
m: will hold the modulus
e: will hold the public exponent
This function will export the RSA public key's parameters found in the given structure. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.Since: 3.3.0
key: Holds the public key
flags: should be 0 for now
output_data: will contain the key ID
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
This function will return a unique ID that depends on the public key parameters. This ID can be used in checking whether a certificate corresponds to the given public key.
If the buffer provided is not long enough to hold the output, then *output_data_size is updated and
GNUTLS_E_SHORT_MEMORY_BUFFER
will be returned. The output will normally be a SHA-1 hash output, which is 20 bytes.Returns: In case of failure a negative error code will be returned, and 0 on success.
Since: 2.12.0
key: should contain a
gnutls_pubkey_t
structureusage: If set will return the number of bits of the parameters (may be NULL)
This function will return the key usage of the public key.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
key: Holds the public key
flags: should be 0 or
GNUTLS_PUBKEY_GET_OPENPGP_FINGERPRINT
output_data: will contain the key ID
output_data_size: holds the size of output_data (and will be replaced by the actual size of parameters)
subkey: Will be non zero if the key ID corresponds to a subkey
This function returns the OpenPGP key ID of the corresponding key. The key is a unique ID that depends on the public key parameters.
If the flag
GNUTLS_PUBKEY_GET_OPENPGP_FINGERPRINT
is specified this function returns the fingerprint of the master key.If the buffer provided is not long enough to hold the output, then *output_data_size is updated and
GNUTLS_E_SHORT_MEMORY_BUFFER
will be returned. The output isGNUTLS_OPENPGP_KEYID_SIZE
bytes long.Returns: In case of failure a negative error code will be returned, and 0 on success.
Since: 3.0
key: should contain a
gnutls_pubkey_t
structurebits: If set will return the number of bits of the parameters (may be NULL)
This function will return the public key algorithm of a public key and if possible will return a number of bits that indicates the security parameter of the key.
Returns: a member of the
gnutls_pk_algorithm_t
enumeration on success, or a negative error code on error.Since: 2.12.0
key: Holds the certificate
hash: The result of the call with the hash algorithm used for signature
mand: If non zero it means that the algorithm MUST use this hash. May be NULL.
This function will read the certifcate and return the appropriate digest algorithm to use for signing with this certificate. Some certificates (i.e. DSA might not be able to sign without the preferred algorithm).
To get the signature algorithm instead of just the hash use
gnutls_pk_to_sign()
with the algorithm of the certificate/key and the providedhash
.Returns: the 0 if the hash algorithm is found. A negative error code is returned on error.
Since: 2.12.0
key: Holds the certificate
signature: contains the signature
hash: The result of the call with the hash algorithm used for signature
This function will read the certifcate and the signed data to determine the hash algorithm used to generate the signature.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
key: The structure to store the parsed public key.
data: The DER or PEM encoded certificate.
format: One of DER or PEM
This function will import the provided public key in a SubjectPublicKeyInfo X.509 structure to a native
gnutls_pubkey_t
structure. The output will be stored inkey
. If the public key is PEM encoded it should have a header of "PUBLIC KEY".Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
key: The structure to store the parsed key
p: holds the p
q: holds the q
g: holds the g
y: holds the y
This function will convert the given DSA raw parameters to the native
gnutls_pubkey_t
format. The output will be stored inkey
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
key: The structure to store the parsed key
curve: holds the curve
x: holds the x
y: holds the y
This function will convert the given elliptic curve parameters to a
gnutls_pubkey_t
. The output will be stored inkey
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
key: The structure to store the parsed key
parameters: DER encoding of an ANSI X9.62 parameters
ecpoint: DER encoding of ANSI X9.62 ECPoint
This function will convert the given elliptic curve parameters to a
gnutls_pubkey_t
. The output will be stored inkey
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.0
key: The public key
crt: The certificate to be imported
flags: should be zero
Imports a public key from an openpgp key. This function will import the given public key to the abstract
gnutls_pubkey_t
structure. The subkey set as preferred will be imported or the master key otherwise.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
pkey: The public key
data: The public key data to be imported
format: The format of the public key
keyid: The key id to use (optional)
flags: Should be zero
This function will import the given public key to the abstract
gnutls_pubkey_t
structure.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.3
key: The public key
obj: The parameters to be imported
flags: should be zero
Imports a public key from a pkcs11 key. This function will import the given public key to the abstract
gnutls_pubkey_t
structure.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
key: A key of type
gnutls_pubkey_t
url: A PKCS 11 url
flags: One of GNUTLS_PKCS11_OBJ_* flags
This function will import a PKCS 11 certificate to a
gnutls_pubkey_t
structure.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
key: The public key
pkey: The private key
usage: GNUTLS_KEY_* key usage flags.
flags: should be zero
Imports the public key from a private. This function will import the given public key to the abstract
gnutls_pubkey_t
structure.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
key: Is a structure will hold the parameters
m: holds the modulus
e: holds the public exponent
This function will replace the parameters in the given structure. The new parameters should be stored in the appropriate gnutls_datum.
Returns:
GNUTLS_E_SUCCESS
on success, or an negative error code.Since: 2.12.0
pkey: The public key
fdata: The TPM key to be imported
format: The format of the private key
srk_password: The password for the SRK key (optional)
flags: One of the GNUTLS_PUBKEY_* flags
This function will import the public key from the provided TPM key structure.
With respect to passwords the same as in
gnutls_pubkey_import_tpm_url()
apply.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
pkey: The public key
url: The URL of the TPM key to be imported
srk_password: The password for the SRK key (optional)
flags: should be zero
This function will import the given private key to the abstract
gnutls_privkey_t
structure.Note that unless
GNUTLS_PUBKEY_DISABLE_CALLBACKS
is specified, if incorrect (or NULL) passwords are given the PKCS11 callback functions will be used to obtain the correct passwords. Otherwise if the SRK password is wrongGNUTLS_E_TPM_SRK_PASSWORD_ERROR
is returned.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
key: A key of type
gnutls_pubkey_t
url: A PKCS 11 url
flags: One of GNUTLS_PKCS11_OBJ_* flags
This function will import a PKCS11 certificate or a TPM key as a public key.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.0
key: The public key
crt: The certificate to be imported
flags: should be zero
This function will import the given public key to the abstract
gnutls_pubkey_t
structure.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
key: The public key
crq: The certificate to be imported
flags: should be zero
This function will import the given public key to the abstract
gnutls_pubkey_t
structure.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.5
pkey: The public key
data: The public key data to be imported
format: The format of the public key
flags: should be zero
This function will import the given public key to the abstract
gnutls_pubkey_t
structure.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.3
key: The structure to be initialized
This function will initialize an public key structure.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
pubkey: The structure to be printed
format: Indicate the format to use
out: Newly allocated datum with (0) terminated string.
This function will pretty print public key information, suitable for display to a human.
Only
GNUTLS_CRT_PRINT_FULL
andGNUTLS_CRT_PRINT_FULL_NUMBERS
are implemented.The output
out
needs to be deallocated usinggnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.5
key: a certificate of type
gnutls_x509_crt_t
usage: an ORed sequence of the GNUTLS_KEY_* elements.
This function will set the key usage flags of the public key. This is only useful if the key is to be exported to a certificate or certificate request.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
key: A key of type
gnutls_pubkey_t
fn: the callback
userdata: data associated with the callback
This function will set a callback function to be used when required to access the object. This function overrides any other global PIN functions.
Note that this function must be called right after initialization to have effect.
Since: 3.1.0
pubkey: Holds the public key
flags: Zero or one of
gnutls_pubkey_flags_t
data: holds the signed data
signature: contains the signature
This function will verify the given signed data, using the parameters from the certificate.
Deprecated. This function cannot be easily used securely. Use
gnutls_pubkey_verify_data2()
instead.Returns: In case of a verification failure
GNUTLS_E_PK_SIG_VERIFY_FAILED
is returned, and zero or positive code on success.Since: 2.12.0
pubkey: Holds the public key
algo: The signature algorithm used
flags: Zero or one of
gnutls_pubkey_flags_t
data: holds the signed data
signature: contains the signature
This function will verify the given signed data, using the parameters from the certificate.
Returns: In case of a verification failure
GNUTLS_E_PK_SIG_VERIFY_FAILED
is returned, and zero or positive code on success.Since: 3.0
key: Holds the public key
flags: Zero or one of
gnutls_pubkey_flags_t
hash: holds the hash digest to be verified
signature: contains the signature
This function will verify the given signed digest, using the parameters from the public key.
Deprecated. This function cannot be easily used securely. Use
gnutls_pubkey_verify_hash2()
instead.Returns: In case of a verification failure
GNUTLS_E_PK_SIG_VERIFY_FAILED
is returned, and zero or positive code on success.Since: 2.12.0
key: Holds the public key
algo: The signature algorithm used
flags: Zero or one of
gnutls_pubkey_flags_t
hash: holds the hash digest to be verified
signature: contains the signature
This function will verify the given signed digest, using the parameters from the public key. Note that unlike
gnutls_privkey_sign_hash()
, this function accepts a signature algorithm instead of a digest algorithm. You can usegnutls_pk_to_sign()
to get the appropriate value.Returns: In case of a verification failure
GNUTLS_E_PK_SIG_VERIFY_FAILED
is returned, and zero or positive code on success.Since: 3.0
key: should contain a
gnutls_pubkey_t
structureThis function will verify the private key parameters.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.3.0
crl: should contain a gnutls_x509_crl_t structure
issuer: is the certificate of the certificate issuer
issuer_key: holds the issuer's private key
dig: The message digest to use. GNUTLS_DIG_SHA1 is the safe choice unless you know what you're doing.
flags: must be 0
This function will sign the CRL with the issuer's private key, and will copy the issuer's information into the CRL.
This must be the last step in a certificate CRL since all the previously set parameters are now signed.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since 2.12.0
crq: should contain a
gnutls_x509_crq_t
structurekey: holds a private key
dig: The message digest to use, i.e.,
GNUTLS_DIG_SHA1
flags: must be 0
This function will sign the certificate request with a private key. This must be the same key as the one used in
gnutls_x509_crt_set_key()
since a certificate request is self signed.This must be the last step in a certificate request generation since all the previously set parameters are now signed.
Returns:
GNUTLS_E_SUCCESS
on success, otherwise a negative error code.GNUTLS_E_ASN1_VALUE_NOT_FOUND
is returned if you didn't set all information in the certificate request (e.g., the version usinggnutls_x509_crq_set_version()
).Since: 2.12.0
crq: should contain a
gnutls_x509_crq_t
structurekey: holds a public key
This function will set the public parameters from the given public key to the request.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
crt: a certificate of type
gnutls_x509_crt_t
issuer: is the certificate of the certificate issuer
issuer_key: holds the issuer's private key
dig: The message digest to use,
GNUTLS_DIG_SHA1
is a safe choiceflags: must be 0
This function will sign the certificate with the issuer's private key, and will copy the issuer's information into the certificate.
This must be the last step in a certificate generation since all the previously set parameters are now signed.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
crt: should contain a
gnutls_x509_crt_t
structurekey: holds a public key
This function will set the public parameters from the given public key to the request.
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 2.12.0
The following functions are to be used for DANE certificate verification.
Their prototypes lie in gnutls/dane.h. Note that you need to link
with the libgnutls-dane
library to use them.
type: is a DANE match type
Convert a
dane_cert_type_t
value to a string.Returns: a string that contains the name of the specified type, or
NULL
.
usage: – undescribed –
Convert a
dane_cert_usage_t
value to a string.Returns: a string that contains the name of the specified type, or
NULL
.
type: is a DANE match type
Convert a
dane_match_type_t
value to a string.Returns: a string that contains the name of the specified type, or
NULL
.
q: The query result structure
idx: The index of the query response.
usage: The certificate usage (see
dane_cert_usage_t
)type: The certificate type (see
dane_cert_type_t
)match: The DANE matching type (see
dane_match_type_t
)data: The DANE data.
This function will provide the DANE data from the query response.
Returns: On success,
DANE_E_SUCCESS
(0) is returned, otherwise a negative error value.
q: The structure to be deinitialized
This function will deinitialize a DANE query result structure.
q: The query result structure
This function will return the number of entries in a query.
Returns: The number of entries.
q: The query result structure
This function will return the status of the query response. See
dane_query_status_t
for the possible types.Returns: The status type.
s: The DANE state structure
r: A structure to place the result
host: The host name to resolve.
proto: The protocol type (tcp, udp, etc.)
port: The service port number (eg. 443).
This function will query the DNS server for the TLSA (DANE) data for the given host.
Returns: On success,
DANE_E_SUCCESS
(0) is returned, otherwise a negative error value.
q: The query result structure
data_entries: Pointer set to the number of entries in the query
dane_data: Pointer to contain an array of DNS rdata items, terminated with a NULL pointer; caller must guarantee that the referenced data remains valid until
dane_query_deinit()
is called.dane_data_len: Pointer to contain the length n bytes of the dane_data items
secure: Pointer set true if the result is validated securely, false if validation failed or the domain queried has no security info
bogus: Pointer set true if the result was not secure due to a security failure
This function will provide the DANE data from the query response.
The pointers dane_data and dane_data_len are allocated with
gnutls_malloc()
to contain the data from the query result structure (individualdane_data
items simply point to the original data and are not allocated separately). The returneddane_data
are only valid during the lifetime ofq
.Returns: On success,
DANE_E_SUCCESS
(0) is returned, otherwise a negative error value.
s: The DANE state structure
r: A structure to place the result
dane_data: array of DNS rdata items, terminated with a NULL pointer; caller must guarantee that the referenced data remains valid until
dane_query_deinit()
is called.dane_data_len: the length n bytes of the dane_data items
secure: true if the result is validated securely, false if validation failed or the domain queried has no security info
bogus: if the result was not secure (secure = 0) due to a security failure, and the result is due to a security failure, bogus is true.
This function will fill in the TLSA (DANE) structure from the given raw DNS record data. The
dane_data
must be valid during the lifetime of the query.Returns: On success,
DANE_E_SUCCESS
(0) is returned, otherwise a negative error value.
s: The structure to be deinitialized
This function will deinitialize a DANE query structure.
s: The structure to be initialized
flags: flags from the
dane_state_flags
enumerationThis function will initialize a DANE query structure.
Returns: On success,
DANE_E_SUCCESS
(0) is returned, otherwise a negative error value.
s: The structure to be deinitialized
file: The file holding the DLV keys.
This function will set a file with trusted keys for DLV (DNSSEC Lookaside Validation).
error: is a DANE error code, a negative error code
This function is similar to strerror. The difference is that it accepts an error number returned by a gnutls function; In case of an unknown error a descriptive string is sent instead of
NULL
.Error codes are always a negative error code.
Returns: A string explaining the DANE error message.
status: The status flags to be printed
out: Newly allocated datum with (0) terminated string.
flags: should be zero
This function will pretty print the status of a verification process – eg. the one obtained by
dane_verify_crt()
.The output
out
needs to be deallocated usinggnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.
s: A DANE state structure (may be NULL)
chain: A certificate chain
chain_size: The size of the chain
chain_type: The type of the certificate chain
hostname: The hostname associated with the chain
proto: The protocol of the service connecting (e.g. tcp)
port: The port of the service connecting (e.g. 443)
sflags: Flags for the the initialization of
s
(if NULL)vflags: Verification flags; an OR'ed list of
dane_verify_flags_t
.verify: An OR'ed list of
dane_verify_status_t
.This function will verify the given certificate chain against the CA constrains and/or the certificate available via DANE. If no information via DANE can be obtained the flag
DANE_VERIFY_NO_DANE_INFO
is set. If a DNSSEC signature is not available for the DANE record then the verify flagDANE_VERIFY_NO_DNSSEC_DATA
is set.Note that the CA constraint only applies for the directly certifying CA and does not account for long CA chains. Moreover this function does not validate the provided chain.
Due to the many possible options of DANE, there is no single threat model countered. When notifying the user about DANE verification results it may be better to mention: DANE verification did not reject the certificate, rather than mentioning a successful DANE verication.
If the
q
parameter is provided it will be used for caching entries.Returns: On success,
DANE_E_SUCCESS
(0) is returned, otherwise a negative error value.
s: A DANE state structure (may be NULL)
chain: A certificate chain
chain_size: The size of the chain
chain_type: The type of the certificate chain
r: DANE data to check against
sflags: Flags for the the initialization of
s
(if NULL)vflags: Verification flags; an OR'ed list of
dane_verify_flags_t
.verify: An OR'ed list of
dane_verify_status_t
.This function will verify the given certificate chain against the CA constrains and/or the certificate available via DANE. If no information via DANE can be obtained the flag
DANE_VERIFY_NO_DANE_INFO
is set. If a DNSSEC signature is not available for the DANE record then the verify flagDANE_VERIFY_NO_DNSSEC_DATA
is set.Note that the CA constraint only applies for the directly certifying CA and does not account for long CA chains.
Due to the many possible options of DANE, there is no single threat model countered. When notifying the user about DANE verification results it may be better to mention: DANE verification did not reject the certificate, rather than mentioning a successful DANE verication.
If the
q
parameter is provided it will be used for caching entries.Returns: On success,
DANE_E_SUCCESS
(0) is returned, otherwise a negative error value.
s: A DANE state structure (may be NULL)
session: A gnutls session
hostname: The hostname associated with the chain
proto: The protocol of the service connecting (e.g. tcp)
port: The port of the service connecting (e.g. 443)
sflags: Flags for the the initialization of
s
(if NULL)vflags: Verification flags; an OR'ed list of
dane_verify_flags_t
.verify: An OR'ed list of
dane_verify_status_t
.This function will verify session's certificate chain against the CA constrains and/or the certificate available via DANE. See
dane_verify_crt()
for more information.This will not verify the chain for validity; unless the DANE verification is restricted to end certificates, this has to be performed separately using
gnutls_certificate_verify_peers3()
.Returns: On success,
DANE_E_SUCCESS
(0) is returned, otherwise a negative error value.
The following functions are to be used for low-level cryptographic operations. Their prototypes lie in gnutls/crypto.h.
handle: is a
gnutls_cipher_hd_t
structure.text: the data to be authenticated
text_size: The length of the data
This function operates on authenticated encryption with associated data (AEAD) ciphers and authenticate the input data. This function can only be called once and before any encryption operations.
Returns: Zero or a negative error code on error.
Since: 3.0
handle: is a
gnutls_cipher_hd_t
structure.ciphertext: the data to encrypt
ciphertextlen: The length of data to encrypt
This function will decrypt the given data using the algorithm specified by the context.
Note that in AEAD ciphers, this will not check the tag. You will need to compare the tag sent with the value returned from
gnutls_cipher_tag()
.Returns: Zero or a negative error code on error.
Since: 2.10.0
handle: is a
gnutls_cipher_hd_t
structure.ciphertext: the data to encrypt
ciphertextlen: The length of data to encrypt
text: the decrypted data
textlen: The available length for decrypted data
This function will decrypt the given data using the algorithm specified by the context.
Note that in AEAD ciphers, this will not check the tag. You will need to compare the tag sent with the value returned from
gnutls_cipher_tag()
.Returns: Zero or a negative error code on error.
Since: 2.12.0
handle: is a
gnutls_cipher_hd_t
structure.This function will deinitialize all resources occupied by the given encryption context.
Since: 2.10.0
handle: is a
gnutls_cipher_hd_t
structure.text: the data to encrypt
textlen: The length of data to encrypt
This function will encrypt the given data using the algorithm specified by the context.
Returns: Zero or a negative error code on error.
Since: 2.10.0
handle: is a
gnutls_cipher_hd_t
structure.text: the data to encrypt
textlen: The length of data to encrypt
ciphertext: the encrypted data
ciphertextlen: The available length for encrypted data
This function will encrypt the given data using the algorithm specified by the context.
Returns: Zero or a negative error code on error.
Since: 2.12.0
algorithm: is an encryption algorithm
Returns: the block size of the encryption algorithm.
Since: 2.10.0
algorithm: is an encryption algorithm
Get block size for encryption algorithm.
Returns: block size for encryption algorithm.
Since: 3.2.0
algorithm: is an encryption algorithm
Returns: the tag size of the authenticated encryption algorithm.
Since: 3.2.2
handle: is a
gnutls_cipher_hd_t
structure.cipher: the encryption algorithm to use
key: The key to be used for encryption
iv: The IV to use (if not applicable set NULL)
This function will initialize an context that can be used for encryption/decryption of data. This will effectively use the current crypto backend in use by gnutls or the cryptographic accelerator in use.
Returns: Zero or a negative error code on error.
Since: 2.10.0
handle: is a
gnutls_cipher_hd_t
structure.iv: the IV to set
ivlen: The length of the IV
This function will set the IV to be used for the next encryption block.
Since: 3.0
handle: is a
gnutls_cipher_hd_t
structure.tag: will hold the tag
tag_size: The length of the tag to return
This function operates on authenticated encryption with associated data (AEAD) ciphers and will return the output tag.
Returns: Zero or a negative error code on error.
Since: 3.0
handle: is a
gnutls_cipher_hd_t
structure.text: the data to hash
textlen: The length of data to hash
This function will hash the given data using the algorithm specified by the context.
Returns: Zero or a negative error code on error.
Since: 2.10.0
handle: is a
gnutls_hash_hd_t
structure.digest: is the output value of the hash
This function will deinitialize all resources occupied by the given hash context.
Since: 2.10.0
algorithm: the hash algorithm to use
text: the data to hash
textlen: The length of data to hash
digest: is the output value of the hash
This convenience function will hash the given data and return output on a single call.
Returns: Zero or a negative error code on error.
Since: 2.10.0
algorithm: the hash algorithm to use
This function will return the length of the output data of the given hash algorithm.
Returns: The length or zero on error.
Since: 2.10.0
dig: is a
gnutls_hash_hd_t
structure.algorithm: the hash algorithm to use
This function will initialize an context that can be used to produce a Message Digest of data. This will effectively use the current crypto backend in use by gnutls or the cryptographic accelerator in use.
Returns: Zero or a negative error code on error.
Since: 2.10.0
handle: is a
gnutls_hash_hd_t
structure.digest: is the output value of the hash
This function will output the current hash value and reset the state of the hash.
Since: 2.10.0
handle: is a
gnutls_cipher_hd_t
structure.text: the data to hash
textlen: The length of data to hash
This function will hash the given data using the algorithm specified by the context.
Returns: Zero or a negative error code on error.
Since: 2.10.0
handle: is a
gnutls_hmac_hd_t
structure.digest: is the output value of the MAC
This function will deinitialize all resources occupied by the given hmac context.
Since: 2.10.0
algorithm: the hash algorithm to use
key: the key to use
keylen: The length of the key
text: the data to hash
textlen: The length of data to hash
digest: is the output value of the hash
This convenience function will hash the given data and return output on a single call.
Returns: Zero or a negative error code on error.
Since: 2.10.0
algorithm: the hmac algorithm to use
This function will return the length of the output data of the given hmac algorithm.
Returns: The length or zero on error.
Since: 2.10.0
dig: is a
gnutls_hmac_hd_t
structure.algorithm: the HMAC algorithm to use
key: The key to be used for encryption
keylen: The length of the key
This function will initialize an context that can be used to produce a Message Authentication Code (MAC) of data. This will effectively use the current crypto backend in use by gnutls or the cryptographic accelerator in use.
Note that despite the name of this function, it can be used for other MAC algorithms than HMAC.
Returns: Zero or a negative error code on error.
Since: 2.10.0
handle: is a
gnutls_hmac_hd_t
structure.digest: is the output value of the MAC
This function will output the current MAC value and reset the state of the MAC.
Since: 2.10.0
handle: is a
gnutls_cipher_hd_t
structure.nonce: the data to set as nonce
nonce_len: The length of data
This function will set the nonce in the MAC algorithm.
Since: 3.2.0
algorithm: is an encryption algorithm
Returns the size of the nonce used by the MAC in TLS.
Returns: length (in bytes) of the given MAC nonce size, or 0.
Since: 3.2.0
level: a security level
data: place to store random bytes
len: The requested size
This function will generate random data and store it to output buffer.
Returns: Zero or a negative error code on error.
Since: 2.12.0
This function refreshes the random generator state. That is the current precise time, CPU usage, and other values are input into its state.
On a slower rate input from /dev/urandom is mixed too.
Since: 3.1.7
The following functions are carried over from old GnuTLS released. They might be removed at a later version. Their prototypes lie in gnutls/compat.h.
cred: is a
gnutls_certificate_credentials_t
structure.func: is the callback function
This function sets a callback to be called in order to retrieve the certificate to be used in the handshake. You are advised to use
gnutls_certificate_set_retrieve_function2()
because it is much more efficient in the processing it requires from gnutls.The callback's function prototype is: int (*callback)(gnutls_session_t, const gnutls_datum_t* req_ca_dn, int nreqs, const gnutls_pk_algorithm_t* pk_algos, int pk_algos_length, gnutls_retr_st* st);
req_ca_cert
is only used in X.509 certificates. Contains a list with the CA names that the server considers trusted. Normally we should send a certificate that is signed by one of these CAs. These names are DER encoded. To get a more meaningful value use the functiongnutls_x509_rdn_get()
.
pk_algos
contains a list with server's acceptable signature algorithms. The certificate returned should support the server's given algorithms.
st
should contain the certificates and private keys.If the callback function is provided then gnutls will call it, in the handshake, if a certificate is requested by the server (and after the certificate request message has been received).
The callback function should set the certificate list to be sent, and return 0 on success. If no certificate was selected then the number of certificates should be set to zero. The value (-1) indicates error and the handshake will be terminated.
cred: is a
gnutls_certificate_credentials_t
structure.func: is the callback function
This function sets a callback to be called in order to retrieve the certificate to be used in the handshake. You are advised to use
gnutls_certificate_set_retrieve_function2()
because it is much more efficient in the processing it requires from gnutls.The callback's function prototype is: int (*callback)(gnutls_session_t, gnutls_retr_st* st);
st
should contain the certificates and private keys.If the callback function is provided then gnutls will call it, in the handshake, after the certificate request message has been received.
The callback function should set the certificate list to be sent, and return 0 on success. The value (-1) indicates error and the handshake will be terminated.
res: is a gnutls_certificate_credentials_t structure
rsa_params: is a structure that holds temporary RSA parameters.
This function will set the temporary RSA parameters for a certificate server to use. These parameters will be used in RSA-EXPORT cipher suites.
session: is a
gnutls_session_t
structure.list: is a 0 terminated list of gnutls_certificate_type_t elements.
Sets the priority on the certificate types supported by gnutls. Priority is higher for elements specified before others. After specifying the types you want, you must append a 0. Note that the certificate type priority is set on the client. The server does not use the cert type priority except for disabling types that were not specified.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
session: is a
gnutls_session_t
structure.list: is a 0 terminated list of gnutls_cipher_algorithm_t elements.
Sets the priority on the ciphers supported by gnutls. Priority is higher for elements specified before others. After specifying the ciphers you want, you must append a 0. Note that the priority is set on the client. The server does not use the algorithm's priority except for disabling algorithms that were not specified.
Returns:
GNUTLS_E_SUCCESS
(0) on success, or a negative error code.
session: is a
gnutls_session_t
structure.list: is a 0 terminated list of gnutls_compression_method_t elements.
Sets the priority on the compression algorithms supported by gnutls. Priority is higher for elements specified before others. After specifying the algorithms you want, you must append a 0. Note that the priority is set on the client. The server does not use the algorithm's priority except for disabling algorithms that were not specified.
TLS 1.0 does not define any compression algorithms except NULL. Other compression algorithms are to be considered as gnutls extensions.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
alloc_func: it's the default memory allocation function. Like
malloc()
.secure_alloc_func: This is the memory allocation function that will be used for sensitive data.
is_secure_func: a function that returns 0 if the memory given is not secure. May be NULL.
realloc_func: A realloc function
free_func: The function that frees allocated data. Must accept a NULL pointer.
Deprecated: since 3.3.0 it is no longer possible to replace the internally used memory allocation functions
This is the function where you set the memory allocation functions gnutls is going to use. By default the libc's allocation functions (
malloc()
,free()
), are used by gnutls, to allocate both sensitive and not sensitive data. This function is provided to set the memory allocation functions to something other than the defaultsThis function must be called before
gnutls_global_init()
is called. This function is not thread safe.
session: is a
gnutls_session_t
structure.list: is a 0 terminated list of gnutls_kx_algorithm_t elements.
Sets the priority on the key exchange algorithms supported by gnutls. Priority is higher for elements specified before others. After specifying the algorithms you want, you must append a 0. Note that the priority is set on the client. The server does not use the algorithm's priority except for disabling algorithms that were not specified.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
session: is a
gnutls_session_t
structure.list: is a 0 terminated list of gnutls_mac_algorithm_t elements.
Sets the priority on the mac algorithms supported by gnutls. Priority is higher for elements specified before others. After specifying the algorithms you want, you must append a 0. Note that the priority is set on the client. The server does not use the algorithm's priority except for disabling algorithms that were not specified.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
key: Holds the key
hash: holds the data to be signed
signature: will contain newly allocated signature
This function will sign the given hash using the private key. You should use
gnutls_openpgp_privkey_set_preferred_key_id()
before calling this function to set the subkey to use.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Deprecated: Use
gnutls_privkey_sign_hash()
instead.
key: Holds the key
flags: should be zero
data: holds the data to be signed
signature: will contain the signature allocate with
gnutls_malloc()
This function will sign the given data using a signature algorithm supported by the private key. Note that this is a low-level function and does not apply any preprocessing or hash on the signed data. For example on an RSA key the input
data
should be of the DigestInfo PKCS1
1.5 format. Use it only if you know what are you doing.Note this function is equivalent to using the
GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA
flag withgnutls_privkey_sign_hash()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Since: 3.1.10
session: is a
gnutls_session_t
structure.list: is a 0 terminated list of gnutls_protocol_t elements.
Sets the priority on the protocol versions supported by gnutls. This function actually enables or disables protocols. Newer protocol versions always have highest priority.
Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
session: is a gnutls session
Get the export RSA parameter's modulus size.
Returns: The bits used in the last RSA-EXPORT key exchange with the peer, or a negative error code in case of error.
session: is a gnutls session
exponent: will hold the exponent.
modulus: will hold the modulus.
This function will return the peer's public key exponent and modulus used in the last RSA-EXPORT authentication. The output parameters must be freed with
gnutls_free()
.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise an error code is returned.
dst: Is the destination structure, which should be initialized.
src: Is the source structure
This function will copy the RSA parameters structure from source to destination.
Returns:
GNUTLS_E_SUCCESS
on success, or an negative error code.
rsa_params: Is a structure that holds the parameters
This function will deinitialize the RSA parameters structure.
params: Holds the RSA parameters
format: the format of output params. One of PEM or DER.
params_data: will contain a PKCS1 RSAPrivateKey structure PEM or DER encoded
params_data_size: holds the size of params_data (and will be replaced by the actual size of parameters)
This function will export the given RSA parameters to a PKCS1 RSAPrivateKey structure. If the buffer provided is not long enough to hold the output, then GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.
If the structure is PEM encoded, it will have a header of "BEGIN RSA PRIVATE KEY".
Returns:
GNUTLS_E_SUCCESS
on success, or an negative error code.
rsa: a structure that holds the rsa parameters
m: will hold the modulus
e: will hold the public exponent
d: will hold the private exponent
p: will hold the first prime (p)
q: will hold the second prime (q)
u: will hold the coefficient
bits: if non null will hold the prime's number of bits
This function will export the RSA parameters found in the given structure. The new parameters will be allocated using
gnutls_malloc()
and will be stored in the appropriate datum.Returns:
GNUTLS_E_SUCCESS
on success, or an negative error code.
params: The structure where the parameters will be stored
bits: is the prime's number of bits
This function will generate new temporary RSA parameters for use in RSA-EXPORT ciphersuites. This function is normally slow.
Note that if the parameters are to be used in export cipher suites the bits value should be 512 or less. Also note that the generation of new RSA parameters is only useful to servers. Clients use the parameters sent by the server, thus it's no use calling this in client side.
Returns:
GNUTLS_E_SUCCESS
on success, or an negative error code.
params: A structure where the parameters will be copied to
pkcs1_params: should contain a PKCS1 RSAPrivateKey structure PEM or DER encoded
format: the format of params. PEM or DER.
This function will extract the RSAPrivateKey found in a PKCS1 formatted structure.
If the structure is PEM encoded, it should have a header of "BEGIN RSA PRIVATE KEY".
Returns:
GNUTLS_E_SUCCESS
on success, or an negative error code.
rsa_params: Is a structure will hold the parameters
m: holds the modulus
e: holds the public exponent
d: holds the private exponent
p: holds the first prime (p)
q: holds the second prime (q)
u: holds the coefficient
This function will replace the parameters in the given structure. The new parameters should be stored in the appropriate gnutls_datum.
Returns:
GNUTLS_E_SUCCESS
on success, or an negative error code.
rsa_params: Is a structure that will hold the parameters
This function will initialize the temporary RSA parameters structure.
Returns:
GNUTLS_E_SUCCESS
on success, or an negative error code.
session: is a
gnutls_session_t
structure.Sets some default priority on the ciphers, key exchange methods, macs and compression methods. This function also includes weak algorithms.
This is the same as calling:
gnutls_priority_set_direct (session, "EXPORT", NULL);
This function is kept around for backwards compatibility, but because of its wide use it is still fully supported. If you wish to allow users to provide a string that specify which ciphers to use (which is recommended), you should use
gnutls_priority_set_direct()
orgnutls_priority_set()
instead.Returns:
GNUTLS_E_SUCCESS
on success, or an error code.
session: is a gnutls session
userdata: if non-
NULL
, will be set to abstract callback pointer.Retrieve the callback function, and its userdata pointer.
Returns: The function pointer set by
gnutls_sign_callback_set()
, or if not set,NULL
.Deprecated: Use the PKCS 11 interfaces instead.
session: is a gnutls session
sign_func: function pointer to application's sign callback.
userdata: void pointer that will be passed to sign callback.
Set the callback function. The function must have this prototype:
typedef int (*gnutls_sign_func) (gnutls_session_t session, void *userdata, gnutls_certificate_type_t cert_type, const gnutls_datum_t * cert, const gnutls_datum_t * hash, gnutls_datum_t * signature);
The
userdata
parameter is passed to thesign_func
verbatim, and can be used to store application-specific data needed in the callback function. See alsognutls_sign_callback_get()
.Deprecated: Use the PKCS 11 or
gnutls_privkey_t
interfacess likegnutls_privkey_import_ext()
instead.
crl: should contain a gnutls_x509_crl_t structure
issuer: is the certificate of the certificate issuer
issuer_key: holds the issuer's private key
This function is the same a
gnutls_x509_crl_sign2()
with no flags, and SHA1 as the hash algorithm.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Deprecated: Use
gnutls_x509_crl_privkey_sign()
.
crq: should contain a
gnutls_x509_crq_t
structurekey: holds a private key
This function is the same a
gnutls_x509_crq_sign2()
with no flags, and SHA1 as the hash algorithm.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Deprecated: Use
gnutls_x509_crq_privkey_sign()
instead.
crt: Holds the certificate
hash: The result of the call with the hash algorithm used for signature
mand: If non-zero it means that the algorithm MUST use this hash. May be NULL.
This function will read the certifcate and return the appropriate digest algorithm to use for signing with this certificate. Some certificates (i.e. DSA might not be able to sign without the preferred algorithm).
Deprecated: Please use
gnutls_pubkey_get_preferred_hash_algorithm()
.Returns: the 0 if the hash algorithm is found. A negative error code is returned on error.
Since: 2.12.0
crt: Holds the certificate
signature: contains the signature
hash: The result of the call with the hash algorithm used for signature
This function will read the certifcate and the signed data to determine the hash algorithm used to generate the signature.
Deprecated: Use
gnutls_pubkey_get_verify_algorithm()
instead.Returns: the 0 if the hash algorithm is found. A negative error code is returned on error.
Since: 2.8.0
crt: Holds the certificate
flags: should be 0 for now
data: holds the data to be signed
signature: contains the signature
This function will verify the given signed data, using the parameters from the certificate.
Deprecated. This function cannot be easily used securely. Use
gnutls_pubkey_verify_data2()
instead.Returns: In case of a verification failure
GNUTLS_E_PK_SIG_VERIFY_FAILED
is returned, and zero or positive code on success.
crt: Holds the certificate
flags: should be 0 for now
hash: holds the hash digest to be verified
signature: contains the signature
This function will verify the given signed digest, using the parameters from the certificate.
Deprecated. This function cannot be easily used securely. Use
gnutls_pubkey_verify_hash2()
instead.Returns: In case of a verification failure
GNUTLS_E_PK_SIG_VERIFY_FAILED
is returned, and zero or positive code on success.
key: Holds the key
digest: should be MD5 or SHA1
flags: should be 0 for now
data: holds the data to be signed
signature: will contain the signature
signature_size: holds the size of signature (and will be replaced by the new size)
This function will sign the given data using a signature algorithm supported by the private key. Signature algorithms are always used together with a hash functions. Different hash functions may be used for the RSA algorithm, but only SHA-1 for the DSA keys.
If the buffer provided is not long enough to hold the output, then *
signature_size
is updated andGNUTLS_E_SHORT_MEMORY_BUFFER
will be returned.Use
gnutls_x509_crt_get_preferred_hash_algorithm()
to determine the hash algorithm.Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Deprecated: Use
gnutls_privkey_sign_data()
.
key: Holds the key
hash: holds the data to be signed
signature: will contain newly allocated signature
This function will sign the given hash using the private key. Do not use this function directly unless you know what it is. Typical signing requires the data to be hashed and stored in special formats (e.g. BER Digest-Info for RSA).
Returns: On success,
GNUTLS_E_SUCCESS
(0) is returned, otherwise a negative error value.Deprecated in: 2.12.0
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/ Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
The purpose of this License is to make a manual, textbook, or other functional and useful document free in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.
The “publisher” means any person or entity that distributes copies of the Document to the public.
A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display copies.
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements.”
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.
You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document.
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.
An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.
To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:
Copyright (C) year your name. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled ``GNU Free Documentation License''.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.” line with this:
with the Invariant Sections being list their titles, with the Front-Cover Texts being list, and with the Back-Cover Texts being list.
If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.
dane_cert_type_name
: DANE APIdane_cert_usage_name
: DANE APIdane_match_type_name
: DANE APIdane_query_data
: DANE APIdane_query_deinit
: DANE APIdane_query_entries
: DANE APIdane_query_status
: DANE APIdane_query_tlsa
: DANE APIdane_query_to_raw_tlsa
: DANE APIdane_raw_tlsa
: DANE APIdane_state_deinit
: DANE APIdane_state_init
: DANE APIdane_state_set_dlv_file
: DANE APIdane_strerror
: DANE APIdane_verification_status_print
: DANE APIdane_verify_crt
: DANE APIdane_verify_crt
: Certificate verificationdane_verify_crt_raw
: DANE APIdane_verify_session_crt
: DANE APIgnutls_alert_get
: Core TLS APIgnutls_alert_get
: Handling alertsgnutls_alert_get_name
: Core TLS APIgnutls_alert_get_name
: Handling alertsgnutls_alert_get_strname
: Core TLS APIgnutls_alert_send
: Core TLS APIgnutls_alert_send
: Handling alertsgnutls_alert_send_appropriate
: Core TLS APIgnutls_alpn_get_selected_protocol
: Core TLS APIgnutls_alpn_set_protocols
: Core TLS APIgnutls_anon_allocate_client_credentials
: Core TLS APIgnutls_anon_allocate_server_credentials
: Core TLS APIgnutls_anon_free_client_credentials
: Core TLS APIgnutls_anon_free_server_credentials
: Core TLS APIgnutls_anon_set_params_function
: Core TLS APIgnutls_anon_set_server_dh_params
: Core TLS APIgnutls_anon_set_server_params_function
: Core TLS APIgnutls_auth_client_get_type
: Core TLS APIgnutls_auth_get_type
: Core TLS APIgnutls_auth_server_get_type
: Core TLS APIgnutls_bye
: Core TLS APIgnutls_bye
: Data transfer and terminationgnutls_certificate_activation_time_peers
: Core TLS APIgnutls_certificate_allocate_credentials
: Core TLS APIgnutls_certificate_client_get_request_status
: Core TLS APIgnutls_certificate_client_set_retrieve_function
: Compatibility APIgnutls_certificate_expiration_time_peers
: Core TLS APIgnutls_certificate_free_ca_names
: Core TLS APIgnutls_certificate_free_cas
: Core TLS APIgnutls_certificate_free_credentials
: Core TLS APIgnutls_certificate_free_crls
: Core TLS APIgnutls_certificate_free_keys
: Core TLS APIgnutls_certificate_get_crt_raw
: Core TLS APIgnutls_certificate_get_issuer
: Core TLS APIgnutls_certificate_get_ours
: Core TLS APIgnutls_certificate_get_peers
: Core TLS APIgnutls_certificate_get_peers_subkey_id
: Core TLS APIgnutls_certificate_send_x509_rdn_sequence
: Core TLS APIgnutls_certificate_send_x509_rdn_sequence
: Certificate credentialsgnutls_certificate_server_set_request
: Core TLS APIgnutls_certificate_server_set_request
: Certificate credentialsgnutls_certificate_server_set_retrieve_function
: Compatibility APIgnutls_certificate_set_dh_params
: Core TLS APIgnutls_certificate_set_key
: Abstract key APIgnutls_certificate_set_key
: Certificate credentialsgnutls_certificate_set_ocsp_status_request_file
: Core TLS APIgnutls_certificate_set_ocsp_status_request_function
: Core TLS APIgnutls_certificate_set_openpgp_key
: OpenPGP APIgnutls_certificate_set_openpgp_key_file
: OpenPGP APIgnutls_certificate_set_openpgp_key_file2
: OpenPGP APIgnutls_certificate_set_openpgp_key_mem
: OpenPGP APIgnutls_certificate_set_openpgp_key_mem2
: OpenPGP APIgnutls_certificate_set_openpgp_keyring_file
: OpenPGP APIgnutls_certificate_set_openpgp_keyring_file
: OpenPGP certificatesgnutls_certificate_set_openpgp_keyring_mem
: OpenPGP APIgnutls_certificate_set_params_function
: Core TLS APIgnutls_certificate_set_params_function
: Parameter generationgnutls_certificate_set_pin_function
: Core TLS APIgnutls_certificate_set_pin_function
: Certificate credentialsgnutls_certificate_set_retrieve_function
: Core TLS APIgnutls_certificate_set_retrieve_function2
: Abstract key APIgnutls_certificate_set_rsa_export_params
: Compatibility APIgnutls_certificate_set_trust_list
: X509 certificate APIgnutls_certificate_set_verify_flags
: Core TLS APIgnutls_certificate_set_verify_function
: Core TLS APIgnutls_certificate_set_verify_function
: Certificate credentialsgnutls_certificate_set_verify_limits
: Core TLS APIgnutls_certificate_set_x509_crl
: Core TLS APIgnutls_certificate_set_x509_crl_file
: Core TLS APIgnutls_certificate_set_x509_crl_mem
: Core TLS APIgnutls_certificate_set_x509_key
: Core TLS APIgnutls_certificate_set_x509_key_file
: Core TLS APIgnutls_certificate_set_x509_key_file2
: Core TLS APIgnutls_certificate_set_x509_key_mem
: Core TLS APIgnutls_certificate_set_x509_key_mem2
: Core TLS APIgnutls_certificate_set_x509_simple_pkcs12_file
: Core TLS APIgnutls_certificate_set_x509_simple_pkcs12_mem
: Core TLS APIgnutls_certificate_set_x509_system_trust
: Core TLS APIgnutls_certificate_set_x509_system_trust
: Using a PKCS11 token with TLSgnutls_certificate_set_x509_trust
: Core TLS APIgnutls_certificate_set_x509_trust_dir
: Core TLS APIgnutls_certificate_set_x509_trust_file
: Core TLS APIgnutls_certificate_set_x509_trust_mem
: Core TLS APIgnutls_certificate_type_get
: Core TLS APIgnutls_certificate_type_get_id
: Core TLS APIgnutls_certificate_type_get_name
: Core TLS APIgnutls_certificate_type_list
: Core TLS APIgnutls_certificate_type_set_priority
: Compatibility APIgnutls_certificate_verification_status_print
: Core TLS APIgnutls_certificate_verify_flags
: Certificate verificationgnutls_certificate_verify_flags
: Verifying a certificate in the context of TLS sessiongnutls_certificate_verify_peers
: Core TLS APIgnutls_certificate_verify_peers2
: Core TLS APIgnutls_certificate_verify_peers3
: Core TLS APIgnutls_certificate_verify_peers3
: Certificate credentialsgnutls_check_version
: Core TLS APIgnutls_cipher_add_auth
: Cryptographic APIgnutls_cipher_decrypt
: Cryptographic APIgnutls_cipher_decrypt2
: Cryptographic APIgnutls_cipher_deinit
: Cryptographic APIgnutls_cipher_encrypt
: Cryptographic APIgnutls_cipher_encrypt2
: Cryptographic APIgnutls_cipher_get
: Core TLS APIgnutls_cipher_get_block_size
: Cryptographic APIgnutls_cipher_get_id
: Core TLS APIgnutls_cipher_get_iv_size
: Cryptographic APIgnutls_cipher_get_key_size
: Core TLS APIgnutls_cipher_get_name
: Core TLS APIgnutls_cipher_get_tag_size
: Cryptographic APIgnutls_cipher_init
: Cryptographic APIgnutls_cipher_list
: Core TLS APIgnutls_cipher_set_iv
: Cryptographic APIgnutls_cipher_set_priority
: Compatibility APIgnutls_cipher_suite_get_name
: Core TLS APIgnutls_cipher_suite_info
: Core TLS APIgnutls_cipher_tag
: Cryptographic APIgnutls_compression_get
: Core TLS APIgnutls_compression_get_id
: Core TLS APIgnutls_compression_get_name
: Core TLS APIgnutls_compression_list
: Core TLS APIgnutls_compression_set_priority
: Compatibility APIgnutls_credentials_clear
: Core TLS APIgnutls_credentials_get
: Core TLS APIgnutls_credentials_set
: Core TLS APIgnutls_credentials_set
: Session initializationgnutls_db_check_entry
: Core TLS APIgnutls_db_check_entry_time
: Core TLS APIgnutls_db_get_default_cache_expiration
: Core TLS APIgnutls_db_get_ptr
: Core TLS APIgnutls_db_remove_session
: Core TLS APIgnutls_db_set_cache_expiration
: Core TLS APIgnutls_db_set_ptr
: Core TLS APIgnutls_db_set_remove_function
: Core TLS APIgnutls_db_set_retrieve_function
: Core TLS APIgnutls_db_set_store_function
: Core TLS APIgnutls_deinit
: Core TLS APIgnutls_deinit
: Data transfer and terminationgnutls_dh_get_group
: Core TLS APIgnutls_dh_get_peers_public_bits
: Core TLS APIgnutls_dh_get_prime_bits
: Core TLS APIgnutls_dh_get_pubkey
: Core TLS APIgnutls_dh_get_secret_bits
: Core TLS APIgnutls_dh_params_cpy
: Core TLS APIgnutls_dh_params_deinit
: Core TLS APIgnutls_dh_params_export2_pkcs3
: Core TLS APIgnutls_dh_params_export_pkcs3
: Core TLS APIgnutls_dh_params_export_raw
: Core TLS APIgnutls_dh_params_generate2
: Core TLS APIgnutls_dh_params_import_pkcs3
: Core TLS APIgnutls_dh_params_import_raw
: Core TLS APIgnutls_dh_params_init
: Core TLS APIgnutls_dh_set_prime_bits
: Core TLS APIgnutls_digest_get_id
: Core TLS APIgnutls_digest_get_name
: Core TLS APIgnutls_digest_list
: Core TLS APIgnutls_dtls_cookie_send
: Datagram TLS APIgnutls_dtls_cookie_verify
: Datagram TLS APIgnutls_dtls_get_data_mtu
: Datagram TLS APIgnutls_dtls_get_mtu
: Datagram TLS APIgnutls_dtls_get_timeout
: Datagram TLS APIgnutls_dtls_get_timeout
: Setting up the transport layergnutls_dtls_prestate_set
: Datagram TLS APIgnutls_dtls_set_data_mtu
: Datagram TLS APIgnutls_dtls_set_mtu
: Datagram TLS APIgnutls_dtls_set_timeouts
: Datagram TLS APIgnutls_ecc_curve_get
: Core TLS APIgnutls_ecc_curve_get_name
: Core TLS APIgnutls_ecc_curve_get_size
: Core TLS APIgnutls_ecc_curve_list
: Core TLS APIgnutls_error_is_fatal
: Core TLS APIgnutls_error_is_fatal
: Data transfer and terminationgnutls_error_to_alert
: Core TLS APIgnutls_error_to_alert
: Handling alertsgnutls_est_record_overhead_size
: Core TLS APIgnutls_fingerprint
: Core TLS APIgnutls_fips140_mode_enabled
: Core TLS APIgnutls_global_deinit
: Core TLS APIgnutls_global_init
: Core TLS APIgnutls_global_set_audit_log_function
: Core TLS APIgnutls_global_set_audit_log_function
: Debugging and auditinggnutls_global_set_log_function
: Core TLS APIgnutls_global_set_log_level
: Core TLS APIgnutls_global_set_mem_functions
: Compatibility APIgnutls_global_set_mutex
: Core TLS APIgnutls_global_set_mutex
: Thread safetygnutls_global_set_time_function
: Core TLS APIgnutls_handshake
: Core TLS APIgnutls_handshake
: TLS handshakegnutls_handshake_description_get_name
: Core TLS APIgnutls_handshake_get_last_in
: Core TLS APIgnutls_handshake_get_last_out
: Core TLS APIgnutls_handshake_set_hook_function
: Core TLS APIgnutls_handshake_set_max_packet_length
: Core TLS APIgnutls_handshake_set_post_client_hello_function
: Core TLS APIgnutls_handshake_set_private_extensions
: Core TLS APIgnutls_handshake_set_random
: Core TLS APIgnutls_handshake_set_timeout
: Core TLS APIgnutls_handshake_set_timeout
: TLS handshakegnutls_hash
: Cryptographic APIgnutls_hash_deinit
: Cryptographic APIgnutls_hash_fast
: Cryptographic APIgnutls_hash_get_len
: Cryptographic APIgnutls_hash_init
: Cryptographic APIgnutls_hash_output
: Cryptographic APIgnutls_heartbeat_allowed
: Core TLS APIgnutls_heartbeat_enable
: Core TLS APIgnutls_heartbeat_get_timeout
: Core TLS APIgnutls_heartbeat_ping
: Core TLS APIgnutls_heartbeat_pong
: Core TLS APIgnutls_heartbeat_set_timeouts
: Core TLS APIgnutls_hex2bin
: Core TLS APIgnutls_hex_decode
: Core TLS APIgnutls_hex_encode
: Core TLS APIgnutls_hmac
: Cryptographic APIgnutls_hmac_deinit
: Cryptographic APIgnutls_hmac_fast
: Cryptographic APIgnutls_hmac_get_len
: Cryptographic APIgnutls_hmac_init
: Cryptographic APIgnutls_hmac_output
: Cryptographic APIgnutls_hmac_set_nonce
: Cryptographic APIgnutls_init
: Core TLS APIgnutls_init
: Session initializationgnutls_key_generate
: Core TLS APIgnutls_kx_get
: Core TLS APIgnutls_kx_get_id
: Core TLS APIgnutls_kx_get_name
: Core TLS APIgnutls_kx_list
: Core TLS APIgnutls_kx_set_priority
: Compatibility APIgnutls_load_file
: Core TLS APIgnutls_mac_get
: Core TLS APIgnutls_mac_get_id
: Core TLS APIgnutls_mac_get_key_size
: Core TLS APIgnutls_mac_get_name
: Core TLS APIgnutls_mac_get_nonce_size
: Cryptographic APIgnutls_mac_list
: Core TLS APIgnutls_mac_set_priority
: Compatibility APIgnutls_ocsp_req_add_cert
: OCSP APIgnutls_ocsp_req_add_cert_id
: OCSP APIgnutls_ocsp_req_deinit
: OCSP APIgnutls_ocsp_req_export
: OCSP APIgnutls_ocsp_req_get_cert_id
: OCSP APIgnutls_ocsp_req_get_extension
: OCSP APIgnutls_ocsp_req_get_nonce
: OCSP APIgnutls_ocsp_req_get_version
: OCSP APIgnutls_ocsp_req_import
: OCSP APIgnutls_ocsp_req_init
: OCSP APIgnutls_ocsp_req_print
: OCSP APIgnutls_ocsp_req_randomize_nonce
: OCSP APIgnutls_ocsp_req_set_extension
: OCSP APIgnutls_ocsp_req_set_nonce
: OCSP APIgnutls_ocsp_resp_check_crt
: OCSP APIgnutls_ocsp_resp_deinit
: OCSP APIgnutls_ocsp_resp_export
: OCSP APIgnutls_ocsp_resp_get_certs
: OCSP APIgnutls_ocsp_resp_get_extension
: OCSP APIgnutls_ocsp_resp_get_nonce
: OCSP APIgnutls_ocsp_resp_get_produced
: OCSP APIgnutls_ocsp_resp_get_responder
: OCSP APIgnutls_ocsp_resp_get_response
: OCSP APIgnutls_ocsp_resp_get_signature
: OCSP APIgnutls_ocsp_resp_get_signature_algorithm
: OCSP APIgnutls_ocsp_resp_get_single
: OCSP APIgnutls_ocsp_resp_get_single
: OCSP certificate status checkinggnutls_ocsp_resp_get_status
: OCSP APIgnutls_ocsp_resp_get_version
: OCSP APIgnutls_ocsp_resp_import
: OCSP APIgnutls_ocsp_resp_init
: OCSP APIgnutls_ocsp_resp_print
: OCSP APIgnutls_ocsp_resp_verify
: OCSP APIgnutls_ocsp_resp_verify_direct
: OCSP APIgnutls_ocsp_status_request_enable_client
: Core TLS APIgnutls_ocsp_status_request_get
: Core TLS APIgnutls_ocsp_status_request_is_checked
: Core TLS APIgnutls_openpgp_crt_check_hostname
: OpenPGP APIgnutls_openpgp_crt_check_hostname2
: OpenPGP APIgnutls_openpgp_crt_deinit
: OpenPGP APIgnutls_openpgp_crt_export
: OpenPGP APIgnutls_openpgp_crt_export2
: OpenPGP APIgnutls_openpgp_crt_get_auth_subkey
: OpenPGP APIgnutls_openpgp_crt_get_creation_time
: OpenPGP APIgnutls_openpgp_crt_get_expiration_time
: OpenPGP APIgnutls_openpgp_crt_get_fingerprint
: OpenPGP APIgnutls_openpgp_crt_get_key_id
: OpenPGP APIgnutls_openpgp_crt_get_key_usage
: OpenPGP APIgnutls_openpgp_crt_get_name
: OpenPGP APIgnutls_openpgp_crt_get_pk_algorithm
: OpenPGP APIgnutls_openpgp_crt_get_pk_dsa_raw
: OpenPGP APIgnutls_openpgp_crt_get_pk_rsa_raw
: OpenPGP APIgnutls_openpgp_crt_get_preferred_key_id
: OpenPGP APIgnutls_openpgp_crt_get_revoked_status
: OpenPGP APIgnutls_openpgp_crt_get_subkey_count
: OpenPGP APIgnutls_openpgp_crt_get_subkey_creation_time
: OpenPGP APIgnutls_openpgp_crt_get_subkey_expiration_time
: OpenPGP APIgnutls_openpgp_crt_get_subkey_fingerprint
: OpenPGP APIgnutls_openpgp_crt_get_subkey_id
: OpenPGP APIgnutls_openpgp_crt_get_subkey_idx
: OpenPGP APIgnutls_openpgp_crt_get_subkey_pk_algorithm
: OpenPGP APIgnutls_openpgp_crt_get_subkey_pk_dsa_raw
: OpenPGP APIgnutls_openpgp_crt_get_subkey_pk_rsa_raw
: OpenPGP APIgnutls_openpgp_crt_get_subkey_revoked_status
: OpenPGP APIgnutls_openpgp_crt_get_subkey_usage
: OpenPGP APIgnutls_openpgp_crt_get_version
: OpenPGP APIgnutls_openpgp_crt_import
: OpenPGP APIgnutls_openpgp_crt_init
: OpenPGP APIgnutls_openpgp_crt_print
: OpenPGP APIgnutls_openpgp_crt_set_preferred_key_id
: OpenPGP APIgnutls_openpgp_crt_verify_ring
: OpenPGP APIgnutls_openpgp_crt_verify_ring
: OpenPGP certificatesgnutls_openpgp_crt_verify_self
: OpenPGP APIgnutls_openpgp_crt_verify_self
: OpenPGP certificatesgnutls_openpgp_keyring_check_id
: OpenPGP APIgnutls_openpgp_keyring_deinit
: OpenPGP APIgnutls_openpgp_keyring_get_crt
: OpenPGP APIgnutls_openpgp_keyring_get_crt_count
: OpenPGP APIgnutls_openpgp_keyring_import
: OpenPGP APIgnutls_openpgp_keyring_init
: OpenPGP APIgnutls_openpgp_privkey_deinit
: OpenPGP APIgnutls_openpgp_privkey_export
: OpenPGP APIgnutls_openpgp_privkey_export2
: OpenPGP APIgnutls_openpgp_privkey_export_dsa_raw
: OpenPGP APIgnutls_openpgp_privkey_export_rsa_raw
: OpenPGP APIgnutls_openpgp_privkey_export_subkey_dsa_raw
: OpenPGP APIgnutls_openpgp_privkey_export_subkey_rsa_raw
: OpenPGP APIgnutls_openpgp_privkey_get_fingerprint
: OpenPGP APIgnutls_openpgp_privkey_get_key_id
: OpenPGP APIgnutls_openpgp_privkey_get_pk_algorithm
: OpenPGP APIgnutls_openpgp_privkey_get_preferred_key_id
: OpenPGP APIgnutls_openpgp_privkey_get_revoked_status
: OpenPGP APIgnutls_openpgp_privkey_get_subkey_count
: OpenPGP APIgnutls_openpgp_privkey_get_subkey_creation_time
: OpenPGP APIgnutls_openpgp_privkey_get_subkey_expiration_time
: OpenPGP APIgnutls_openpgp_privkey_get_subkey_fingerprint
: OpenPGP APIgnutls_openpgp_privkey_get_subkey_id
: OpenPGP APIgnutls_openpgp_privkey_get_subkey_idx
: OpenPGP APIgnutls_openpgp_privkey_get_subkey_pk_algorithm
: OpenPGP APIgnutls_openpgp_privkey_get_subkey_revoked_status
: OpenPGP APIgnutls_openpgp_privkey_import
: OpenPGP APIgnutls_openpgp_privkey_init
: OpenPGP APIgnutls_openpgp_privkey_sec_param
: OpenPGP APIgnutls_openpgp_privkey_set_preferred_key_id
: OpenPGP APIgnutls_openpgp_privkey_sign_hash
: Compatibility APIgnutls_openpgp_send_cert
: Core TLS APIgnutls_openpgp_set_recv_key_function
: OpenPGP APIgnutls_packet_deinit
: Core TLS APIgnutls_packet_get
: Core TLS APIgnutls_pcert_deinit
: Abstract key APIgnutls_pcert_import_openpgp
: Abstract key APIgnutls_pcert_import_openpgp_raw
: Abstract key APIgnutls_pcert_import_x509
: Abstract key APIgnutls_pcert_import_x509_raw
: Abstract key APIgnutls_pcert_list_import_x509_raw
: Abstract key APIgnutls_pem_base64_decode
: Core TLS APIgnutls_pem_base64_decode_alloc
: Core TLS APIgnutls_pem_base64_encode
: Core TLS APIgnutls_pem_base64_encode_alloc
: Core TLS APIgnutls_perror
: Core TLS APIgnutls_pk_algorithm_get_name
: Core TLS APIgnutls_pk_bits_to_sec_param
: Core TLS APIgnutls_pk_bits_to_sec_param
: Selecting cryptographic key sizesgnutls_pk_get_id
: Core TLS APIgnutls_pk_get_name
: Core TLS APIgnutls_pk_list
: Core TLS APIgnutls_pk_to_sign
: Core TLS APIgnutls_pkcs11_add_provider
: PKCS 11 APIgnutls_pkcs11_copy_secret_key
: PKCS 11 APIgnutls_pkcs11_copy_x509_crt
: PKCS 11 APIgnutls_pkcs11_copy_x509_crt
: Writing objectsgnutls_pkcs11_copy_x509_privkey
: PKCS 11 APIgnutls_pkcs11_copy_x509_privkey
: Writing objectsgnutls_pkcs11_crt_is_known
: PKCS 11 APIgnutls_pkcs11_deinit
: PKCS 11 APIgnutls_pkcs11_delete_url
: PKCS 11 APIgnutls_pkcs11_delete_url
: Writing objectsgnutls_pkcs11_get_pin_function
: PKCS 11 APIgnutls_pkcs11_get_raw_issuer
: PKCS 11 APIgnutls_pkcs11_init
: PKCS 11 APIgnutls_pkcs11_init
: PKCS11 Initializationgnutls_pkcs11_obj_deinit
: PKCS 11 APIgnutls_pkcs11_obj_export
: PKCS 11 APIgnutls_pkcs11_obj_export2
: PKCS 11 APIgnutls_pkcs11_obj_export3
: PKCS 11 APIgnutls_pkcs11_obj_export_url
: PKCS 11 APIgnutls_pkcs11_obj_flags_get_str
: PKCS 11 APIgnutls_pkcs11_obj_get_exts
: PKCS 11 APIgnutls_pkcs11_obj_get_flags
: PKCS 11 APIgnutls_pkcs11_obj_get_info
: PKCS 11 APIgnutls_pkcs11_obj_get_info
: Reading objectsgnutls_pkcs11_obj_get_type
: PKCS 11 APIgnutls_pkcs11_obj_import_url
: PKCS 11 APIgnutls_pkcs11_obj_init
: PKCS 11 APIgnutls_pkcs11_obj_list_import_url
: PKCS 11 APIgnutls_pkcs11_obj_list_import_url2
: PKCS 11 APIgnutls_pkcs11_obj_set_pin_function
: PKCS 11 APIgnutls_pkcs11_privkey_deinit
: PKCS 11 APIgnutls_pkcs11_privkey_export_pubkey
: PKCS 11 APIgnutls_pkcs11_privkey_export_url
: PKCS 11 APIgnutls_pkcs11_privkey_generate
: PKCS 11 APIgnutls_pkcs11_privkey_generate2
: PKCS 11 APIgnutls_pkcs11_privkey_get_info
: PKCS 11 APIgnutls_pkcs11_privkey_get_pk_algorithm
: PKCS 11 APIgnutls_pkcs11_privkey_import_url
: PKCS 11 APIgnutls_pkcs11_privkey_init
: PKCS 11 APIgnutls_pkcs11_privkey_set_pin_function
: PKCS 11 APIgnutls_pkcs11_privkey_status
: PKCS 11 APIgnutls_pkcs11_reinit
: PKCS 11 APIgnutls_pkcs11_set_pin_function
: PKCS 11 APIgnutls_pkcs11_set_token_function
: PKCS 11 APIgnutls_pkcs11_token_get_flags
: PKCS 11 APIgnutls_pkcs11_token_get_info
: PKCS 11 APIgnutls_pkcs11_token_get_mechanism
: PKCS 11 APIgnutls_pkcs11_token_get_random
: PKCS 11 APIgnutls_pkcs11_token_get_url
: PKCS 11 APIgnutls_pkcs11_token_init
: PKCS 11 APIgnutls_pkcs11_token_set_pin
: PKCS 11 APIgnutls_pkcs11_type_get_name
: PKCS 11 APIgnutls_pkcs12_bag_decrypt
: PKCS 12 APIgnutls_pkcs12_bag_deinit
: PKCS 12 APIgnutls_pkcs12_bag_encrypt
: PKCS 12 APIgnutls_pkcs12_bag_get_count
: PKCS 12 APIgnutls_pkcs12_bag_get_data
: PKCS 12 APIgnutls_pkcs12_bag_get_friendly_name
: PKCS 12 APIgnutls_pkcs12_bag_get_key_id
: PKCS 12 APIgnutls_pkcs12_bag_get_type
: PKCS 12 APIgnutls_pkcs12_bag_init
: PKCS 12 APIgnutls_pkcs12_bag_set_crl
: PKCS 12 APIgnutls_pkcs12_bag_set_crt
: PKCS 12 APIgnutls_pkcs12_bag_set_data
: PKCS 12 APIgnutls_pkcs12_bag_set_friendly_name
: PKCS 12 APIgnutls_pkcs12_bag_set_key_id
: PKCS 12 APIgnutls_pkcs12_deinit
: PKCS 12 APIgnutls_pkcs12_export
: PKCS 12 APIgnutls_pkcs12_export2
: PKCS 12 APIgnutls_pkcs12_generate_mac
: PKCS 12 APIgnutls_pkcs12_get_bag
: PKCS 12 APIgnutls_pkcs12_import
: PKCS 12 APIgnutls_pkcs12_init
: PKCS 12 APIgnutls_pkcs12_set_bag
: PKCS 12 APIgnutls_pkcs12_simple_parse
: PKCS 12 APIgnutls_pkcs12_simple_parse
: Managing encrypted keysgnutls_pkcs12_verify_mac
: PKCS 12 APIgnutls_pkcs7_deinit
: X509 certificate APIgnutls_pkcs7_delete_crl
: X509 certificate APIgnutls_pkcs7_delete_crt
: X509 certificate APIgnutls_pkcs7_export
: X509 certificate APIgnutls_pkcs7_export2
: X509 certificate APIgnutls_pkcs7_get_crl_count
: X509 certificate APIgnutls_pkcs7_get_crl_raw
: X509 certificate APIgnutls_pkcs7_get_crt_count
: X509 certificate APIgnutls_pkcs7_get_crt_raw
: X509 certificate APIgnutls_pkcs7_import
: X509 certificate APIgnutls_pkcs7_init
: X509 certificate APIgnutls_pkcs7_set_crl
: X509 certificate APIgnutls_pkcs7_set_crl_raw
: X509 certificate APIgnutls_pkcs7_set_crt
: X509 certificate APIgnutls_pkcs7_set_crt_raw
: X509 certificate APIgnutls_prf
: Core TLS APIgnutls_prf_raw
: Core TLS APIgnutls_priority_certificate_type_list
: Core TLS APIgnutls_priority_cipher_list
: Core TLS APIgnutls_priority_compression_list
: Core TLS APIgnutls_priority_deinit
: Core TLS APIgnutls_priority_ecc_curve_list
: Core TLS APIgnutls_priority_get_cipher_suite_index
: Core TLS APIgnutls_priority_init
: Core TLS APIgnutls_priority_kx_list
: Core TLS APIgnutls_priority_mac_list
: Core TLS APIgnutls_priority_protocol_list
: Core TLS APIgnutls_priority_set
: Core TLS APIgnutls_priority_set_direct
: Core TLS APIgnutls_priority_sign_list
: Core TLS APIgnutls_privkey_decrypt_data
: Abstract key APIgnutls_privkey_decrypt_data
: Operationsgnutls_privkey_deinit
: Abstract key APIgnutls_privkey_export_dsa_raw
: Abstract key APIgnutls_privkey_export_ecc_raw
: Abstract key APIgnutls_privkey_export_rsa_raw
: Abstract key APIgnutls_privkey_generate
: Abstract key APIgnutls_privkey_get_pk_algorithm
: Abstract key APIgnutls_privkey_get_type
: Abstract key APIgnutls_privkey_import_dsa_raw
: Abstract key APIgnutls_privkey_import_ecc_raw
: Abstract key APIgnutls_privkey_import_ext
: Abstract key APIgnutls_privkey_import_ext2
: Abstract key APIgnutls_privkey_import_ext2
: Abstract private keysgnutls_privkey_import_openpgp
: Abstract key APIgnutls_privkey_import_openpgp_raw
: Abstract key APIgnutls_privkey_import_pkcs11
: Abstract key APIgnutls_privkey_import_pkcs11_url
: Abstract key APIgnutls_privkey_import_rsa_raw
: Abstract key APIgnutls_privkey_import_tpm_raw
: Abstract key APIgnutls_privkey_import_tpm_url
: Abstract key APIgnutls_privkey_import_tpm_url
: Using keysgnutls_privkey_import_url
: Abstract key APIgnutls_privkey_import_url
: Abstract private keysgnutls_privkey_import_x509
: Abstract key APIgnutls_privkey_import_x509_raw
: Abstract key APIgnutls_privkey_import_x509_raw
: Managing encrypted keysgnutls_privkey_init
: Abstract key APIgnutls_privkey_set_pin_function
: Abstract key APIgnutls_privkey_sign_data
: Abstract key APIgnutls_privkey_sign_data
: Operationsgnutls_privkey_sign_hash
: Abstract key APIgnutls_privkey_sign_hash
: Operationsgnutls_privkey_sign_raw_data
: Compatibility APIgnutls_privkey_status
: Abstract key APIgnutls_privkey_verify_params
: Abstract key APIgnutls_protocol_get_id
: Core TLS APIgnutls_protocol_get_name
: Core TLS APIgnutls_protocol_get_version
: Core TLS APIgnutls_protocol_list
: Core TLS APIgnutls_protocol_set_priority
: Compatibility APIgnutls_psk_allocate_client_credentials
: Core TLS APIgnutls_psk_allocate_server_credentials
: Core TLS APIgnutls_psk_client_get_hint
: Core TLS APIgnutls_psk_free_client_credentials
: Core TLS APIgnutls_psk_free_server_credentials
: Core TLS APIgnutls_psk_server_get_username
: Core TLS APIgnutls_psk_set_client_credentials
: Core TLS APIgnutls_psk_set_client_credentials_function
: Core TLS APIgnutls_psk_set_client_credentials_function
: PSK credentialsgnutls_psk_set_params_function
: Core TLS APIgnutls_psk_set_server_credentials_file
: Core TLS APIgnutls_psk_set_server_credentials_file
: PSK credentialsgnutls_psk_set_server_credentials_function
: Core TLS APIgnutls_psk_set_server_credentials_hint
: Core TLS APIgnutls_psk_set_server_dh_params
: Core TLS APIgnutls_psk_set_server_params_function
: Core TLS APIgnutls_pubkey_deinit
: Abstract key APIgnutls_pubkey_encrypt_data
: Abstract key APIgnutls_pubkey_encrypt_data
: Operationsgnutls_pubkey_export
: Abstract key APIgnutls_pubkey_export2
: Abstract key APIgnutls_pubkey_export2
: Abstract public keysgnutls_pubkey_export_dsa_raw
: Abstract key APIgnutls_pubkey_export_ecc_raw
: Abstract key APIgnutls_pubkey_export_ecc_x962
: Abstract key APIgnutls_pubkey_export_rsa_raw
: Abstract key APIgnutls_pubkey_get_key_id
: Abstract key APIgnutls_pubkey_get_key_usage
: Abstract key APIgnutls_pubkey_get_openpgp_key_id
: Abstract key APIgnutls_pubkey_get_pk_algorithm
: Abstract key APIgnutls_pubkey_get_preferred_hash_algorithm
: Abstract key APIgnutls_pubkey_get_verify_algorithm
: Abstract key APIgnutls_pubkey_import
: Abstract key APIgnutls_pubkey_import_dsa_raw
: Abstract key APIgnutls_pubkey_import_ecc_raw
: Abstract key APIgnutls_pubkey_import_ecc_x962
: Abstract key APIgnutls_pubkey_import_openpgp
: Abstract key APIgnutls_pubkey_import_openpgp_raw
: Abstract key APIgnutls_pubkey_import_pkcs11
: Abstract key APIgnutls_pubkey_import_pkcs11_url
: Abstract key APIgnutls_pubkey_import_privkey
: Abstract key APIgnutls_pubkey_import_rsa_raw
: Abstract key APIgnutls_pubkey_import_tpm_raw
: Abstract key APIgnutls_pubkey_import_tpm_url
: Abstract key APIgnutls_pubkey_import_tpm_url
: Using keysgnutls_pubkey_import_url
: Abstract key APIgnutls_pubkey_import_x509
: Abstract key APIgnutls_pubkey_import_x509_crq
: Abstract key APIgnutls_pubkey_import_x509_raw
: Abstract key APIgnutls_pubkey_init
: Abstract key APIgnutls_pubkey_print
: Abstract key APIgnutls_pubkey_set_key_usage
: Abstract key APIgnutls_pubkey_set_pin_function
: Abstract key APIgnutls_pubkey_verify_data
: Abstract key APIgnutls_pubkey_verify_data2
: Abstract key APIgnutls_pubkey_verify_data2
: Operationsgnutls_pubkey_verify_hash
: Abstract key APIgnutls_pubkey_verify_hash2
: Abstract key APIgnutls_pubkey_verify_hash2
: Operationsgnutls_pubkey_verify_params
: Abstract key APIgnutls_random_art
: Core TLS APIgnutls_range_split
: Core TLS APIgnutls_record_can_use_length_hiding
: Core TLS APIgnutls_record_check_corked
: Core TLS APIgnutls_record_check_pending
: Core TLS APIgnutls_record_check_pending
: Data transfer and terminationgnutls_record_cork
: Core TLS APIgnutls_record_cork
: Buffered data transfergnutls_record_disable_padding
: Core TLS APIgnutls_record_get_direction
: Core TLS APIgnutls_record_get_direction
: Asynchronous operationgnutls_record_get_discarded
: Datagram TLS APIgnutls_record_get_max_size
: Core TLS APIgnutls_record_overhead_size
: Core TLS APIgnutls_record_recv
: Core TLS APIgnutls_record_recv
: Data transfer and terminationgnutls_record_recv_packet
: Core TLS APIgnutls_record_recv_seq
: Core TLS APIgnutls_record_recv_seq
: Data transfer and terminationgnutls_record_send
: Core TLS APIgnutls_record_send
: Data transfer and terminationgnutls_record_send_range
: Core TLS APIgnutls_record_set_max_empty_records
: Core TLS APIgnutls_record_set_max_size
: Core TLS APIgnutls_record_set_timeout
: Core TLS APIgnutls_record_uncork
: Core TLS APIgnutls_record_uncork
: Buffered data transfergnutls_rehandshake
: Core TLS APIgnutls_rnd
: Cryptographic APIgnutls_rnd
: Random number generationgnutls_rnd_refresh
: Cryptographic APIgnutls_rsa_export_get_modulus_bits
: Compatibility APIgnutls_rsa_export_get_pubkey
: Compatibility APIgnutls_rsa_params_cpy
: Compatibility APIgnutls_rsa_params_deinit
: Compatibility APIgnutls_rsa_params_export_pkcs1
: Compatibility APIgnutls_rsa_params_export_raw
: Compatibility APIgnutls_rsa_params_generate2
: Compatibility APIgnutls_rsa_params_import_pkcs1
: Compatibility APIgnutls_rsa_params_import_raw
: Compatibility APIgnutls_rsa_params_init
: Compatibility APIgnutls_safe_renegotiation_status
: Core TLS APIgnutls_sec_param_get_name
: Core TLS APIgnutls_sec_param_to_pk_bits
: Core TLS APIgnutls_sec_param_to_pk_bits
: Selecting cryptographic key sizesgnutls_sec_param_to_symmetric_bits
: Core TLS APIgnutls_server_name_get
: Core TLS APIgnutls_server_name_set
: Core TLS APIgnutls_session_channel_binding
: Core TLS APIgnutls_session_enable_compatibility_mode
: Core TLS APIgnutls_session_force_valid
: Core TLS APIgnutls_session_get_data
: Core TLS APIgnutls_session_get_data2
: Core TLS APIgnutls_session_get_desc
: Core TLS APIgnutls_session_get_id
: Core TLS APIgnutls_session_get_id2
: Core TLS APIgnutls_session_get_ptr
: Core TLS APIgnutls_session_get_random
: Core TLS APIgnutls_session_is_resumed
: Core TLS APIgnutls_session_is_resumed
: Session resumptiongnutls_session_resumption_requested
: Core TLS APIgnutls_session_resumption_requested
: Session resumptiongnutls_session_set_data
: Core TLS APIgnutls_session_set_id
: Core TLS APIgnutls_session_set_premaster
: Core TLS APIgnutls_session_set_ptr
: Core TLS APIgnutls_session_ticket_enable_client
: Core TLS APIgnutls_session_ticket_enable_server
: Core TLS APIgnutls_session_ticket_enable_server
: Session resumptiongnutls_session_ticket_key_generate
: Core TLS APIgnutls_session_ticket_key_generate
: Session resumptiongnutls_set_default_export_priority
: Compatibility APIgnutls_set_default_priority
: Core TLS APIgnutls_sign_algorithm_get
: Core TLS APIgnutls_sign_algorithm_get_client
: Core TLS APIgnutls_sign_algorithm_get_requested
: Core TLS APIgnutls_sign_callback_get
: Compatibility APIgnutls_sign_callback_set
: Compatibility APIgnutls_sign_get_hash_algorithm
: Core TLS APIgnutls_sign_get_id
: Core TLS APIgnutls_sign_get_name
: Core TLS APIgnutls_sign_get_pk_algorithm
: Core TLS APIgnutls_sign_is_secure
: Core TLS APIgnutls_sign_list
: Core TLS APIgnutls_srp_allocate_client_credentials
: Core TLS APIgnutls_srp_allocate_server_credentials
: Core TLS APIgnutls_srp_base64_decode
: Core TLS APIgnutls_srp_base64_decode_alloc
: Core TLS APIgnutls_srp_base64_encode
: Core TLS APIgnutls_srp_base64_encode_alloc
: Core TLS APIgnutls_srp_free_client_credentials
: Core TLS APIgnutls_srp_free_server_credentials
: Core TLS APIgnutls_srp_server_get_username
: Core TLS APIgnutls_srp_set_client_credentials
: Core TLS APIgnutls_srp_set_client_credentials_function
: Core TLS APIgnutls_srp_set_client_credentials_function
: SRP credentialsgnutls_srp_set_prime_bits
: Core TLS APIgnutls_srp_set_server_credentials_file
: Core TLS APIgnutls_srp_set_server_credentials_file
: SRP credentialsgnutls_srp_set_server_credentials_function
: Core TLS APIgnutls_srp_set_server_credentials_function
: SRP credentialsgnutls_srp_set_server_fake_salt_seed
: Core TLS APIgnutls_srp_verifier
: Core TLS APIgnutls_srp_verifier
: Authentication using SRPgnutls_srtp_get_keys
: Core TLS APIgnutls_srtp_get_keys
: SRTPgnutls_srtp_get_mki
: Core TLS APIgnutls_srtp_get_profile_id
: Core TLS APIgnutls_srtp_get_profile_name
: Core TLS APIgnutls_srtp_get_selected_profile
: Core TLS APIgnutls_srtp_set_mki
: Core TLS APIgnutls_srtp_set_profile
: Core TLS APIgnutls_srtp_set_profile_direct
: Core TLS APIgnutls_store_commitment
: Core TLS APIgnutls_store_commitment
: Certificate verificationgnutls_store_pubkey
: Core TLS APIgnutls_store_pubkey
: Certificate verificationgnutls_strerror
: Core TLS APIgnutls_strerror_name
: Core TLS APIgnutls_subject_alt_names_deinit
: X509 certificate APIgnutls_subject_alt_names_get
: X509 certificate APIgnutls_subject_alt_names_init
: X509 certificate APIgnutls_subject_alt_names_set
: X509 certificate APIgnutls_supplemental_get_name
: Core TLS APIgnutls_tdb_deinit
: Core TLS APIgnutls_tdb_init
: Core TLS APIgnutls_tdb_set_store_commitment_func
: Core TLS APIgnutls_tdb_set_store_func
: Core TLS APIgnutls_tdb_set_verify_func
: Core TLS APIgnutls_tpm_get_registered
: TPM APIgnutls_tpm_key_list_deinit
: TPM APIgnutls_tpm_key_list_get_url
: TPM APIgnutls_tpm_privkey_delete
: TPM APIgnutls_tpm_privkey_delete
: Using keysgnutls_tpm_privkey_delete
: Key generationgnutls_tpm_privkey_generate
: TPM APIgnutls_tpm_privkey_generate
: Key generationgnutls_transport_get_int
: Core TLS APIgnutls_transport_get_int2
: Core TLS APIgnutls_transport_get_ptr
: Core TLS APIgnutls_transport_get_ptr2
: Core TLS APIgnutls_transport_set_errno
: Core TLS APIgnutls_transport_set_errno
: Setting up the transport layergnutls_transport_set_errno_function
: Core TLS APIgnutls_transport_set_int
: Core TLS APIgnutls_transport_set_int2
: Core TLS APIgnutls_transport_set_ptr
: Core TLS APIgnutls_transport_set_ptr2
: Core TLS APIgnutls_transport_set_pull_function
: Core TLS APIgnutls_transport_set_pull_function
: Setting up the transport layergnutls_transport_set_pull_timeout_function
: Core TLS APIgnutls_transport_set_pull_timeout_function
: Setting up the transport layergnutls_transport_set_push_function
: Core TLS APIgnutls_transport_set_push_function
: Setting up the transport layergnutls_transport_set_vec_push_function
: Core TLS APIgnutls_transport_set_vec_push_function
: Setting up the transport layergnutls_url_is_supported
: Core TLS APIgnutls_url_is_supported
: Abstract public keysgnutls_verify_stored_pubkey
: Core TLS APIgnutls_verify_stored_pubkey
: Certificate verificationgnutls_x509_aia_deinit
: X509 certificate APIgnutls_x509_aia_get
: X509 certificate APIgnutls_x509_aia_init
: X509 certificate APIgnutls_x509_aia_set
: X509 certificate APIgnutls_x509_aki_deinit
: X509 certificate APIgnutls_x509_aki_get_cert_issuer
: X509 certificate APIgnutls_x509_aki_get_id
: X509 certificate APIgnutls_x509_aki_init
: X509 certificate APIgnutls_x509_aki_set_cert_issuer
: X509 certificate APIgnutls_x509_aki_set_id
: X509 certificate APIgnutls_x509_crl_check_issuer
: X509 certificate APIgnutls_x509_crl_deinit
: X509 certificate APIgnutls_x509_crl_dist_points_deinit
: X509 certificate APIgnutls_x509_crl_dist_points_get
: X509 certificate APIgnutls_x509_crl_dist_points_init
: X509 certificate APIgnutls_x509_crl_dist_points_set
: X509 certificate APIgnutls_x509_crl_export
: X509 certificate APIgnutls_x509_crl_export2
: X509 certificate APIgnutls_x509_crl_get_authority_key_gn_serial
: X509 certificate APIgnutls_x509_crl_get_authority_key_id
: X509 certificate APIgnutls_x509_crl_get_crt_count
: X509 certificate APIgnutls_x509_crl_get_crt_serial
: X509 certificate APIgnutls_x509_crl_get_crt_serial
: PKIX certificate revocation listsgnutls_x509_crl_get_dn_oid
: X509 certificate APIgnutls_x509_crl_get_extension_data
: X509 certificate APIgnutls_x509_crl_get_extension_data2
: X509 certificate APIgnutls_x509_crl_get_extension_info
: X509 certificate APIgnutls_x509_crl_get_extension_oid
: X509 certificate APIgnutls_x509_crl_get_issuer_dn
: X509 certificate APIgnutls_x509_crl_get_issuer_dn2
: X509 certificate APIgnutls_x509_crl_get_issuer_dn_by_oid
: X509 certificate APIgnutls_x509_crl_get_next_update
: X509 certificate APIgnutls_x509_crl_get_number
: X509 certificate APIgnutls_x509_crl_get_raw_issuer_dn
: X509 certificate APIgnutls_x509_crl_get_signature
: X509 certificate APIgnutls_x509_crl_get_signature_algorithm
: X509 certificate APIgnutls_x509_crl_get_this_update
: X509 certificate APIgnutls_x509_crl_get_version
: X509 certificate APIgnutls_x509_crl_import
: X509 certificate APIgnutls_x509_crl_init
: X509 certificate APIgnutls_x509_crl_iter_crt_serial
: X509 certificate APIgnutls_x509_crl_iter_deinit
: X509 certificate APIgnutls_x509_crl_list_import
: X509 certificate APIgnutls_x509_crl_list_import2
: X509 certificate APIgnutls_x509_crl_print
: X509 certificate APIgnutls_x509_crl_privkey_sign
: Abstract key APIgnutls_x509_crl_privkey_sign
: PKIX certificate revocation listsgnutls_x509_crl_set_authority_key_id
: X509 certificate APIgnutls_x509_crl_set_crt
: X509 certificate APIgnutls_x509_crl_set_crt_serial
: X509 certificate APIgnutls_x509_crl_set_next_update
: X509 certificate APIgnutls_x509_crl_set_number
: X509 certificate APIgnutls_x509_crl_set_this_update
: X509 certificate APIgnutls_x509_crl_set_version
: X509 certificate APIgnutls_x509_crl_sign
: Compatibility APIgnutls_x509_crl_sign2
: X509 certificate APIgnutls_x509_crl_sign2
: PKIX certificate revocation listsgnutls_x509_crl_verify
: X509 certificate APIgnutls_x509_crq_deinit
: X509 certificate APIgnutls_x509_crq_export
: X509 certificate APIgnutls_x509_crq_export2
: X509 certificate APIgnutls_x509_crq_get_attribute_by_oid
: X509 certificate APIgnutls_x509_crq_get_attribute_data
: X509 certificate APIgnutls_x509_crq_get_attribute_info
: X509 certificate APIgnutls_x509_crq_get_basic_constraints
: X509 certificate APIgnutls_x509_crq_get_challenge_password
: X509 certificate APIgnutls_x509_crq_get_dn
: X509 certificate APIgnutls_x509_crq_get_dn2
: X509 certificate APIgnutls_x509_crq_get_dn_by_oid
: X509 certificate APIgnutls_x509_crq_get_dn_oid
: X509 certificate APIgnutls_x509_crq_get_extension_by_oid
: X509 certificate APIgnutls_x509_crq_get_extension_by_oid2
: X509 certificate APIgnutls_x509_crq_get_extension_data
: X509 certificate APIgnutls_x509_crq_get_extension_data2
: X509 certificate APIgnutls_x509_crq_get_extension_info
: X509 certificate APIgnutls_x509_crq_get_key_id
: X509 certificate APIgnutls_x509_crq_get_key_purpose_oid
: X509 certificate APIgnutls_x509_crq_get_key_rsa_raw
: X509 certificate APIgnutls_x509_crq_get_key_usage
: X509 certificate APIgnutls_x509_crq_get_pk_algorithm
: X509 certificate APIgnutls_x509_crq_get_private_key_usage_period
: X509 certificate APIgnutls_x509_crq_get_subject_alt_name
: X509 certificate APIgnutls_x509_crq_get_subject_alt_othername_oid
: X509 certificate APIgnutls_x509_crq_get_version
: X509 certificate APIgnutls_x509_crq_import
: X509 certificate APIgnutls_x509_crq_init
: X509 certificate APIgnutls_x509_crq_print
: X509 certificate APIgnutls_x509_crq_privkey_sign
: Abstract key APIgnutls_x509_crq_set_attribute_by_oid
: X509 certificate APIgnutls_x509_crq_set_basic_constraints
: X509 certificate APIgnutls_x509_crq_set_challenge_password
: X509 certificate APIgnutls_x509_crq_set_dn
: X509 certificate APIgnutls_x509_crq_set_dn_by_oid
: X509 certificate APIgnutls_x509_crq_set_key
: X509 certificate APIgnutls_x509_crq_set_key
: PKCS 10 certificate requestsgnutls_x509_crq_set_key_purpose_oid
: X509 certificate APIgnutls_x509_crq_set_key_rsa_raw
: X509 certificate APIgnutls_x509_crq_set_key_usage
: X509 certificate APIgnutls_x509_crq_set_private_key_usage_period
: X509 certificate APIgnutls_x509_crq_set_pubkey
: Abstract key APIgnutls_x509_crq_set_pubkey
: Operationsgnutls_x509_crq_set_subject_alt_name
: X509 certificate APIgnutls_x509_crq_set_version
: X509 certificate APIgnutls_x509_crq_sign
: Compatibility APIgnutls_x509_crq_sign2
: X509 certificate APIgnutls_x509_crq_sign2
: PKCS 10 certificate requestsgnutls_x509_crq_verify
: X509 certificate APIgnutls_x509_crt_check_hostname
: X509 certificate APIgnutls_x509_crt_check_hostname2
: X509 certificate APIgnutls_x509_crt_check_issuer
: X509 certificate APIgnutls_x509_crt_check_revocation
: X509 certificate APIgnutls_x509_crt_cpy_crl_dist_points
: X509 certificate APIgnutls_x509_crt_deinit
: X509 certificate APIgnutls_x509_crt_export
: X509 certificate APIgnutls_x509_crt_export2
: X509 certificate APIgnutls_x509_crt_get_activation_time
: X509 certificate APIgnutls_x509_crt_get_authority_info_access
: X509 certificate APIgnutls_x509_crt_get_authority_key_gn_serial
: X509 certificate APIgnutls_x509_crt_get_authority_key_id
: X509 certificate APIgnutls_x509_crt_get_basic_constraints
: X509 certificate APIgnutls_x509_crt_get_ca_status
: X509 certificate APIgnutls_x509_crt_get_crl_dist_points
: X509 certificate APIgnutls_x509_crt_get_dn
: X509 certificate APIgnutls_x509_crt_get_dn2
: X509 certificate APIgnutls_x509_crt_get_dn2
: X.509 distinguished namesgnutls_x509_crt_get_dn_by_oid
: X509 certificate APIgnutls_x509_crt_get_dn_oid
: X509 certificate APIgnutls_x509_crt_get_expiration_time
: X509 certificate APIgnutls_x509_crt_get_extension_by_oid
: X509 certificate APIgnutls_x509_crt_get_extension_by_oid2
: X509 certificate APIgnutls_x509_crt_get_extension_data
: X509 certificate APIgnutls_x509_crt_get_extension_data2
: X509 certificate APIgnutls_x509_crt_get_extension_info
: X509 certificate APIgnutls_x509_crt_get_extension_oid
: X509 certificate APIgnutls_x509_crt_get_fingerprint
: X509 certificate APIgnutls_x509_crt_get_issuer
: X509 certificate APIgnutls_x509_crt_get_issuer_alt_name
: X509 certificate APIgnutls_x509_crt_get_issuer_alt_name2
: X509 certificate APIgnutls_x509_crt_get_issuer_alt_othername_oid
: X509 certificate APIgnutls_x509_crt_get_issuer_dn
: X509 certificate APIgnutls_x509_crt_get_issuer_dn2
: X509 certificate APIgnutls_x509_crt_get_issuer_dn_by_oid
: X509 certificate APIgnutls_x509_crt_get_issuer_dn_oid
: X509 certificate APIgnutls_x509_crt_get_issuer_unique_id
: X509 certificate APIgnutls_x509_crt_get_key_id
: X509 certificate APIgnutls_x509_crt_get_key_id
: X.509 public and private keysgnutls_x509_crt_get_key_purpose_oid
: X509 certificate APIgnutls_x509_crt_get_key_usage
: X509 certificate APIgnutls_x509_crt_get_name_constraints
: X509 certificate APIgnutls_x509_crt_get_pk_algorithm
: X509 certificate APIgnutls_x509_crt_get_pk_dsa_raw
: X509 certificate APIgnutls_x509_crt_get_pk_rsa_raw
: X509 certificate APIgnutls_x509_crt_get_policy
: X509 certificate APIgnutls_x509_crt_get_preferred_hash_algorithm
: Compatibility APIgnutls_x509_crt_get_private_key_usage_period
: X509 certificate APIgnutls_x509_crt_get_proxy
: X509 certificate APIgnutls_x509_crt_get_raw_dn
: X509 certificate APIgnutls_x509_crt_get_raw_issuer_dn
: X509 certificate APIgnutls_x509_crt_get_serial
: X509 certificate APIgnutls_x509_crt_get_signature
: X509 certificate APIgnutls_x509_crt_get_signature_algorithm
: X509 certificate APIgnutls_x509_crt_get_subject
: X509 certificate APIgnutls_x509_crt_get_subject_alt_name
: X509 certificate APIgnutls_x509_crt_get_subject_alt_name2
: X509 certificate APIgnutls_x509_crt_get_subject_alt_othername_oid
: X509 certificate APIgnutls_x509_crt_get_subject_key_id
: X509 certificate APIgnutls_x509_crt_get_subject_unique_id
: X509 certificate APIgnutls_x509_crt_get_verify_algorithm
: Compatibility APIgnutls_x509_crt_get_version
: X509 certificate APIgnutls_x509_crt_import
: X509 certificate APIgnutls_x509_crt_import_pkcs11
: PKCS 11 APIgnutls_x509_crt_import_pkcs11_url
: PKCS 11 APIgnutls_x509_crt_init
: X509 certificate APIgnutls_x509_crt_list_import
: X509 certificate APIgnutls_x509_crt_list_import2
: X509 certificate APIgnutls_x509_crt_list_import_pkcs11
: PKCS 11 APIgnutls_x509_crt_list_verify
: X509 certificate APIgnutls_x509_crt_print
: X509 certificate APIgnutls_x509_crt_privkey_sign
: Abstract key APIgnutls_x509_crt_set_activation_time
: X509 certificate APIgnutls_x509_crt_set_authority_info_access
: X509 certificate APIgnutls_x509_crt_set_authority_key_id
: X509 certificate APIgnutls_x509_crt_set_basic_constraints
: X509 certificate APIgnutls_x509_crt_set_ca_status
: X509 certificate APIgnutls_x509_crt_set_crl_dist_points
: X509 certificate APIgnutls_x509_crt_set_crl_dist_points2
: X509 certificate APIgnutls_x509_crt_set_crq
: X509 certificate APIgnutls_x509_crt_set_crq_extensions
: X509 certificate APIgnutls_x509_crt_set_dn
: X509 certificate APIgnutls_x509_crt_set_dn_by_oid
: X509 certificate APIgnutls_x509_crt_set_expiration_time
: X509 certificate APIgnutls_x509_crt_set_extension_by_oid
: X509 certificate APIgnutls_x509_crt_set_issuer_alt_name
: X509 certificate APIgnutls_x509_crt_set_issuer_dn
: X509 certificate APIgnutls_x509_crt_set_issuer_dn_by_oid
: X509 certificate APIgnutls_x509_crt_set_key
: X509 certificate APIgnutls_x509_crt_set_key_purpose_oid
: X509 certificate APIgnutls_x509_crt_set_key_usage
: X509 certificate APIgnutls_x509_crt_set_name_constraints
: X509 certificate APIgnutls_x509_crt_set_pin_function
: X509 certificate APIgnutls_x509_crt_set_policy
: X509 certificate APIgnutls_x509_crt_set_private_key_usage_period
: X509 certificate APIgnutls_x509_crt_set_proxy
: X509 certificate APIgnutls_x509_crt_set_proxy_dn
: X509 certificate APIgnutls_x509_crt_set_pubkey
: Abstract key APIgnutls_x509_crt_set_pubkey
: Operationsgnutls_x509_crt_set_serial
: X509 certificate APIgnutls_x509_crt_set_subject_alt_name
: X509 certificate APIgnutls_x509_crt_set_subject_alternative_name
: X509 certificate APIgnutls_x509_crt_set_subject_key_id
: X509 certificate APIgnutls_x509_crt_set_version
: X509 certificate APIgnutls_x509_crt_sign
: X509 certificate APIgnutls_x509_crt_sign2
: X509 certificate APIgnutls_x509_crt_verify
: X509 certificate APIgnutls_x509_crt_verify_data
: Compatibility APIgnutls_x509_crt_verify_hash
: Compatibility APIgnutls_x509_dn_deinit
: X509 certificate APIgnutls_x509_dn_export
: X509 certificate APIgnutls_x509_dn_export2
: X509 certificate APIgnutls_x509_dn_get_rdn_ava
: X509 certificate APIgnutls_x509_dn_get_rdn_ava
: X.509 distinguished namesgnutls_x509_dn_import
: X509 certificate APIgnutls_x509_dn_init
: X509 certificate APIgnutls_x509_dn_oid_known
: X509 certificate APIgnutls_x509_dn_oid_name
: X509 certificate APIgnutls_x509_ext_deinit
: X509 certificate APIgnutls_x509_ext_export_aia
: X509 certificate APIgnutls_x509_ext_export_authority_key_id
: X509 certificate APIgnutls_x509_ext_export_basic_constraints
: X509 certificate APIgnutls_x509_ext_export_crl_dist_points
: X509 certificate APIgnutls_x509_ext_export_key_purposes
: X509 certificate APIgnutls_x509_ext_export_key_usage
: X509 certificate APIgnutls_x509_ext_export_name_constraints
: X509 certificate APIgnutls_x509_ext_export_policies
: X509 certificate APIgnutls_x509_ext_export_private_key_usage_period
: X509 certificate APIgnutls_x509_ext_export_proxy
: X509 certificate APIgnutls_x509_ext_export_subject_alt_names
: X509 certificate APIgnutls_x509_ext_export_subject_key_id
: X509 certificate APIgnutls_x509_ext_import_aia
: X509 certificate APIgnutls_x509_ext_import_authority_key_id
: X509 certificate APIgnutls_x509_ext_import_basic_constraints
: X509 certificate APIgnutls_x509_ext_import_crl_dist_points
: X509 certificate APIgnutls_x509_ext_import_key_purposes
: X509 certificate APIgnutls_x509_ext_import_key_usage
: X509 certificate APIgnutls_x509_ext_import_name_constraints
: X509 certificate APIgnutls_x509_ext_import_policies
: X509 certificate APIgnutls_x509_ext_import_private_key_usage_period
: X509 certificate APIgnutls_x509_ext_import_proxy
: X509 certificate APIgnutls_x509_ext_import_subject_alt_names
: X509 certificate APIgnutls_x509_ext_import_subject_key_id
: X509 certificate APIgnutls_x509_ext_print
: X509 certificate APIgnutls_x509_key_purpose_deinit
: X509 certificate APIgnutls_x509_key_purpose_get
: X509 certificate APIgnutls_x509_key_purpose_init
: X509 certificate APIgnutls_x509_key_purpose_set
: X509 certificate APIgnutls_x509_name_constraints_add_excluded
: X509 certificate APIgnutls_x509_name_constraints_add_permitted
: X509 certificate APIgnutls_x509_name_constraints_check
: X509 certificate APIgnutls_x509_name_constraints_check_crt
: X509 certificate APIgnutls_x509_name_constraints_deinit
: X509 certificate APIgnutls_x509_name_constraints_get_excluded
: X509 certificate APIgnutls_x509_name_constraints_get_permitted
: X509 certificate APIgnutls_x509_name_constraints_init
: X509 certificate APIgnutls_x509_othername_to_virtual
: X509 certificate APIgnutls_x509_policies_deinit
: X509 certificate APIgnutls_x509_policies_get
: X509 certificate APIgnutls_x509_policies_init
: X509 certificate APIgnutls_x509_policies_set
: X509 certificate APIgnutls_x509_policy_release
: X509 certificate APIgnutls_x509_privkey_cpy
: X509 certificate APIgnutls_x509_privkey_deinit
: X509 certificate APIgnutls_x509_privkey_export
: X509 certificate APIgnutls_x509_privkey_export2
: X509 certificate APIgnutls_x509_privkey_export2_pkcs8
: X509 certificate APIgnutls_x509_privkey_export_dsa_raw
: X509 certificate APIgnutls_x509_privkey_export_ecc_raw
: X509 certificate APIgnutls_x509_privkey_export_pkcs8
: X509 certificate APIgnutls_x509_privkey_export_rsa_raw
: X509 certificate APIgnutls_x509_privkey_export_rsa_raw2
: X509 certificate APIgnutls_x509_privkey_fix
: X509 certificate APIgnutls_x509_privkey_generate
: X509 certificate APIgnutls_x509_privkey_get_key_id
: X509 certificate APIgnutls_x509_privkey_get_pk_algorithm
: X509 certificate APIgnutls_x509_privkey_get_pk_algorithm2
: X509 certificate APIgnutls_x509_privkey_import
: X509 certificate APIgnutls_x509_privkey_import2
: X509 certificate APIgnutls_x509_privkey_import2
: Managing encrypted keysgnutls_x509_privkey_import_dsa_raw
: X509 certificate APIgnutls_x509_privkey_import_ecc_raw
: X509 certificate APIgnutls_x509_privkey_import_openssl
: X509 certificate APIgnutls_x509_privkey_import_openssl
: Managing encrypted keysgnutls_x509_privkey_import_pkcs8
: X509 certificate APIgnutls_x509_privkey_import_rsa_raw
: X509 certificate APIgnutls_x509_privkey_import_rsa_raw2
: X509 certificate APIgnutls_x509_privkey_init
: X509 certificate APIgnutls_x509_privkey_sec_param
: X509 certificate APIgnutls_x509_privkey_sign_data
: Compatibility APIgnutls_x509_privkey_sign_hash
: Compatibility APIgnutls_x509_privkey_verify_params
: X509 certificate APIgnutls_x509_rdn_get
: X509 certificate APIgnutls_x509_rdn_get_by_oid
: X509 certificate APIgnutls_x509_rdn_get_oid
: X509 certificate APIgnutls_x509_trust_list_add_cas
: X509 certificate APIgnutls_x509_trust_list_add_cas
: Verifying X.509 certificate pathsgnutls_x509_trust_list_add_crls
: X509 certificate APIgnutls_x509_trust_list_add_crls
: Verifying X.509 certificate pathsgnutls_x509_trust_list_add_named_crt
: X509 certificate APIgnutls_x509_trust_list_add_named_crt
: Verifying X.509 certificate pathsgnutls_x509_trust_list_add_system_trust
: X509 certificate APIgnutls_x509_trust_list_add_system_trust
: Verifying X.509 certificate pathsgnutls_x509_trust_list_add_trust_dir
: X509 certificate APIgnutls_x509_trust_list_add_trust_file
: X509 certificate APIgnutls_x509_trust_list_add_trust_file
: Verifying X.509 certificate pathsgnutls_x509_trust_list_add_trust_mem
: X509 certificate APIgnutls_x509_trust_list_add_trust_mem
: Verifying X.509 certificate pathsgnutls_x509_trust_list_deinit
: X509 certificate APIgnutls_x509_trust_list_get_issuer
: X509 certificate APIgnutls_x509_trust_list_init
: X509 certificate APIgnutls_x509_trust_list_remove_cas
: X509 certificate APIgnutls_x509_trust_list_remove_trust_file
: X509 certificate APIgnutls_x509_trust_list_remove_trust_mem
: X509 certificate APIgnutls_x509_trust_list_verify_crt
: X509 certificate APIgnutls_x509_trust_list_verify_crt
: Verifying X.509 certificate pathsgnutls_x509_trust_list_verify_crt2
: X509 certificate APIgnutls_x509_trust_list_verify_crt2
: Verifying X.509 certificate pathsgnutls_x509_trust_list_verify_named_crt
: X509 certificate APIgnutls_x509_trust_list_verify_named_crt
: Verifying X.509 certificate pathscerttool
: certtool Invocationdanetool
: danetool Invocationgnutls-cli
: gnutls-cli Invocationgnutls-cli-debug
: gnutls-cli-debug Invocationgnutls-serv
: gnutls-serv Invocationocsptool
: ocsptool Invocationp11tool
: p11tool Invocationpsktool
: psktool Invocationsrptool
: srptool Invocationtpmtool
: tpmtool Invocation[1] IETF, or Internet Engineering Task Force, is a large open international community of network designers, operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth operation of the Internet. It is open to any interested individual.
[2] If this is not possible then please consult Interoperability.
[3] MAC stands for Message Authentication Code. It can be described as a keyed hash algorithm. See RFC2104.
[4] See also the Server Name Indication extension on serverind.
[5] See LDAP, IMAP etc.
[6] see http://p11-glue.freedesktop.org/trust-module.html.
[7] http://www.gnupg.org/related_software/gpgme/
[8] http://www.opensc-project.org
[9] http://p11-glue.freedesktop.org/trust-module.html
[10] http://p11-glue.freedesktop.org/
[11] The first message in a TLS handshake
[12] A key of 128 bits or 16 bytes should be sufficient for this purpose.
[13] The default is /etc/gnutls/default-priorities
.
[14] It depends on the group used. Primes with lesser bits are always faster, but also easier to break. See Selecting cryptographic key sizes for the acceptable security levels.
[15] such as the
gnutls_certificate_credentials_t
structures
[16] See http://lists.gnu.org/archive/html/gnutls-devel/2011-02/msg00079.html.
[17] Check http://home.gna.org/cryptodev-linux/
for the Linux kernel implementation of /dev/crypto
.