AOMedia AV1 Codec
svc_encoder_rtc
1/*
2 * Copyright (c) 2019, Alliance for Open Media. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11// This is an example demonstrating how to implement a multi-layer AOM
12// encoding scheme for RTC video applications.
13
14#include <assert.h>
15#include <math.h>
16#include <stdio.h>
17#include <stdlib.h>
18#include <string.h>
19
20#include "aom/aom_encoder.h"
21#include "aom/aomcx.h"
22#include "av1/common/enums.h"
23#include "av1/encoder/encoder.h"
24#include "common/args.h"
25#include "common/tools_common.h"
26#include "common/video_writer.h"
27#include "examples/encoder_util.h"
28#include "aom_ports/aom_timer.h"
29
30#define OPTION_BUFFER_SIZE 1024
31
32typedef struct {
33 const char *output_filename;
34 char options[OPTION_BUFFER_SIZE];
35 struct AvxInputContext input_ctx;
36 int speed;
37 int aq_mode;
38 int layering_mode;
39 int output_obu;
40} AppInput;
41
42typedef enum {
43 QUANTIZER = 0,
44 BITRATE,
45 SCALE_FACTOR,
46 AUTO_ALT_REF,
47 ALL_OPTION_TYPES
48} LAYER_OPTION_TYPE;
49
50static const arg_def_t outputfile =
51 ARG_DEF("o", "output", 1, "Output filename");
52static const arg_def_t frames_arg =
53 ARG_DEF("f", "frames", 1, "Number of frames to encode");
54static const arg_def_t threads_arg =
55 ARG_DEF("th", "threads", 1, "Number of threads to use");
56static const arg_def_t width_arg = ARG_DEF("w", "width", 1, "Source width");
57static const arg_def_t height_arg = ARG_DEF("h", "height", 1, "Source height");
58static const arg_def_t timebase_arg =
59 ARG_DEF("t", "timebase", 1, "Timebase (num/den)");
60static const arg_def_t bitrate_arg = ARG_DEF(
61 "b", "target-bitrate", 1, "Encoding bitrate, in kilobits per second");
62static const arg_def_t spatial_layers_arg =
63 ARG_DEF("sl", "spatial-layers", 1, "Number of spatial SVC layers");
64static const arg_def_t temporal_layers_arg =
65 ARG_DEF("tl", "temporal-layers", 1, "Number of temporal SVC layers");
66static const arg_def_t layering_mode_arg =
67 ARG_DEF("lm", "layering-mode", 1, "Temporal layering scheme.");
68static const arg_def_t kf_dist_arg =
69 ARG_DEF("k", "kf-dist", 1, "Number of frames between keyframes");
70static const arg_def_t scale_factors_arg =
71 ARG_DEF("r", "scale-factors", 1, "Scale factors (lowest to highest layer)");
72static const arg_def_t min_q_arg =
73 ARG_DEF(NULL, "min-q", 1, "Minimum quantizer");
74static const arg_def_t max_q_arg =
75 ARG_DEF(NULL, "max-q", 1, "Maximum quantizer");
76static const arg_def_t speed_arg =
77 ARG_DEF("sp", "speed", 1, "Speed configuration");
78static const arg_def_t aqmode_arg =
79 ARG_DEF("aq", "aqmode", 1, "AQ mode off/on");
80static const arg_def_t bitrates_arg =
81 ARG_DEF("bl", "bitrates", 1,
82 "Bitrates[spatial_layer * num_temporal_layer + temporal_layer]");
83static const arg_def_t dropframe_thresh_arg =
84 ARG_DEF(NULL, "drop-frame", 1, "Temporal resampling threshold (buf %)");
85static const arg_def_t error_resilient_arg =
86 ARG_DEF(NULL, "error-resilient", 1, "Error resilient flag");
87static const arg_def_t output_obu_arg =
88 ARG_DEF(NULL, "output-obu", 1,
89 "Write OBUs when set to 1. Otherwise write IVF files.");
90
91#if CONFIG_AV1_HIGHBITDEPTH
92static const struct arg_enum_list bitdepth_enum[] = {
93 { "8", AOM_BITS_8 }, { "10", AOM_BITS_10 }, { "12", AOM_BITS_12 }, { NULL, 0 }
94};
95
96static const arg_def_t bitdepth_arg = ARG_DEF_ENUM(
97 "d", "bit-depth", 1, "Bit depth for codec 8, 10 or 12. ", bitdepth_enum);
98#endif // CONFIG_AV1_HIGHBITDEPTH
99
100static const arg_def_t *svc_args[] = {
101 &frames_arg, &outputfile, &width_arg,
102 &height_arg, &timebase_arg, &bitrate_arg,
103 &spatial_layers_arg, &kf_dist_arg, &scale_factors_arg,
104 &min_q_arg, &max_q_arg, &temporal_layers_arg,
105 &layering_mode_arg, &threads_arg, &aqmode_arg,
106#if CONFIG_AV1_HIGHBITDEPTH
107 &bitdepth_arg,
108#endif
109 &speed_arg, &bitrates_arg, &dropframe_thresh_arg,
110 &error_resilient_arg, &output_obu_arg, NULL
111};
112
113#define zero(Dest) memset(&(Dest), 0, sizeof(Dest));
114
115static const char *exec_name;
116
117void usage_exit(void) {
118 fprintf(stderr, "Usage: %s <options> input_filename -o output_filename\n",
119 exec_name);
120 fprintf(stderr, "Options:\n");
121 arg_show_usage(stderr, svc_args);
122 exit(EXIT_FAILURE);
123}
124
125static int file_is_y4m(const char detect[4]) {
126 return memcmp(detect, "YUV4", 4) == 0;
127}
128
129static int fourcc_is_ivf(const char detect[4]) {
130 if (memcmp(detect, "DKIF", 4) == 0) {
131 return 1;
132 }
133 return 0;
134}
135
136static const int option_max_values[ALL_OPTION_TYPES] = { 63, INT_MAX, INT_MAX,
137 1 };
138
139static const int option_min_values[ALL_OPTION_TYPES] = { 0, 0, 1, 0 };
140
141static void open_input_file(struct AvxInputContext *input,
143 /* Parse certain options from the input file, if possible */
144 input->file = strcmp(input->filename, "-") ? fopen(input->filename, "rb")
145 : set_binary_mode(stdin);
146
147 if (!input->file) fatal("Failed to open input file");
148
149 if (!fseeko(input->file, 0, SEEK_END)) {
150 /* Input file is seekable. Figure out how long it is, so we can get
151 * progress info.
152 */
153 input->length = ftello(input->file);
154 rewind(input->file);
155 }
156
157 /* Default to 1:1 pixel aspect ratio. */
158 input->pixel_aspect_ratio.numerator = 1;
159 input->pixel_aspect_ratio.denominator = 1;
160
161 /* For RAW input sources, these bytes will applied on the first frame
162 * in read_frame().
163 */
164 input->detect.buf_read = fread(input->detect.buf, 1, 4, input->file);
165 input->detect.position = 0;
166
167 if (input->detect.buf_read == 4 && file_is_y4m(input->detect.buf)) {
168 if (y4m_input_open(&input->y4m, input->file, input->detect.buf, 4, csp,
169 input->only_i420) >= 0) {
170 input->file_type = FILE_TYPE_Y4M;
171 input->width = input->y4m.pic_w;
172 input->height = input->y4m.pic_h;
173 input->pixel_aspect_ratio.numerator = input->y4m.par_n;
174 input->pixel_aspect_ratio.denominator = input->y4m.par_d;
175 input->framerate.numerator = input->y4m.fps_n;
176 input->framerate.denominator = input->y4m.fps_d;
177 input->fmt = input->y4m.aom_fmt;
178 input->bit_depth = input->y4m.bit_depth;
179 } else {
180 fatal("Unsupported Y4M stream.");
181 }
182 } else if (input->detect.buf_read == 4 && fourcc_is_ivf(input->detect.buf)) {
183 fatal("IVF is not supported as input.");
184 } else {
185 input->file_type = FILE_TYPE_RAW;
186 }
187}
188
189static aom_codec_err_t extract_option(LAYER_OPTION_TYPE type, char *input,
190 int *value0, int *value1) {
191 if (type == SCALE_FACTOR) {
192 *value0 = (int)strtol(input, &input, 10);
193 if (*input++ != '/') return AOM_CODEC_INVALID_PARAM;
194 *value1 = (int)strtol(input, &input, 10);
195
196 if (*value0 < option_min_values[SCALE_FACTOR] ||
197 *value1 < option_min_values[SCALE_FACTOR] ||
198 *value0 > option_max_values[SCALE_FACTOR] ||
199 *value1 > option_max_values[SCALE_FACTOR] ||
200 *value0 > *value1) // num shouldn't be greater than den
202 } else {
203 *value0 = atoi(input);
204 if (*value0 < option_min_values[type] || *value0 > option_max_values[type])
206 }
207 return AOM_CODEC_OK;
208}
209
210static aom_codec_err_t parse_layer_options_from_string(
211 aom_svc_params_t *svc_params, LAYER_OPTION_TYPE type, const char *input,
212 int *option0, int *option1) {
214 char *input_string;
215 char *token;
216 const char *delim = ",";
217 int num_layers = svc_params->number_spatial_layers;
218 int i = 0;
219
220 if (type == BITRATE)
221 num_layers =
222 svc_params->number_spatial_layers * svc_params->number_temporal_layers;
223
224 if (input == NULL || option0 == NULL ||
225 (option1 == NULL && type == SCALE_FACTOR))
227
228 input_string = malloc(strlen(input));
229 memcpy(input_string, input, strlen(input));
230 if (input_string == NULL) return AOM_CODEC_MEM_ERROR;
231 token = strtok(input_string, delim); // NOLINT
232 for (i = 0; i < num_layers; ++i) {
233 if (token != NULL) {
234 res = extract_option(type, token, option0 + i, option1 + i);
235 if (res != AOM_CODEC_OK) break;
236 token = strtok(NULL, delim); // NOLINT
237 } else {
238 break;
239 }
240 }
241 if (res == AOM_CODEC_OK && i != num_layers) {
243 }
244 free(input_string);
245 return res;
246}
247
248static void parse_command_line(int argc, const char **argv_,
249 AppInput *app_input,
250 aom_svc_params_t *svc_params,
251 aom_codec_enc_cfg_t *enc_cfg) {
252 struct arg arg;
253 char **argv = NULL;
254 char **argi = NULL;
255 char **argj = NULL;
256 char string_options[1024] = { 0 };
257
258 // Default settings
259 svc_params->number_spatial_layers = 1;
260 svc_params->number_temporal_layers = 1;
261 app_input->layering_mode = 0;
262 app_input->output_obu = 0;
263 enc_cfg->g_threads = 1;
264 enc_cfg->rc_end_usage = AOM_CBR;
265
266 // process command line options
267 argv = argv_dup(argc - 1, argv_ + 1);
268 for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) {
269 arg.argv_step = 1;
270
271 if (arg_match(&arg, &outputfile, argi)) {
272 app_input->output_filename = arg.val;
273 } else if (arg_match(&arg, &width_arg, argi)) {
274 enc_cfg->g_w = arg_parse_uint(&arg);
275 } else if (arg_match(&arg, &height_arg, argi)) {
276 enc_cfg->g_h = arg_parse_uint(&arg);
277 } else if (arg_match(&arg, &timebase_arg, argi)) {
278 enc_cfg->g_timebase = arg_parse_rational(&arg);
279 } else if (arg_match(&arg, &bitrate_arg, argi)) {
280 enc_cfg->rc_target_bitrate = arg_parse_uint(&arg);
281 } else if (arg_match(&arg, &spatial_layers_arg, argi)) {
282 svc_params->number_spatial_layers = arg_parse_uint(&arg);
283 } else if (arg_match(&arg, &temporal_layers_arg, argi)) {
284 svc_params->number_temporal_layers = arg_parse_uint(&arg);
285 } else if (arg_match(&arg, &speed_arg, argi)) {
286 app_input->speed = arg_parse_uint(&arg);
287 if (app_input->speed > 9) {
288 aom_tools_warn("Mapping speed %d to speed 9.\n", app_input->speed);
289 }
290 } else if (arg_match(&arg, &aqmode_arg, argi)) {
291 app_input->aq_mode = arg_parse_uint(&arg);
292 } else if (arg_match(&arg, &threads_arg, argi)) {
293 enc_cfg->g_threads = arg_parse_uint(&arg);
294 } else if (arg_match(&arg, &layering_mode_arg, argi)) {
295 app_input->layering_mode = arg_parse_int(&arg);
296 } else if (arg_match(&arg, &kf_dist_arg, argi)) {
297 enc_cfg->kf_min_dist = arg_parse_uint(&arg);
298 enc_cfg->kf_max_dist = enc_cfg->kf_min_dist;
299 } else if (arg_match(&arg, &scale_factors_arg, argi)) {
300 parse_layer_options_from_string(svc_params, SCALE_FACTOR, arg.val,
301 svc_params->scaling_factor_num,
302 svc_params->scaling_factor_den);
303 } else if (arg_match(&arg, &min_q_arg, argi)) {
304 enc_cfg->rc_min_quantizer = arg_parse_uint(&arg);
305 } else if (arg_match(&arg, &max_q_arg, argi)) {
306 enc_cfg->rc_max_quantizer = arg_parse_uint(&arg);
307#if CONFIG_AV1_HIGHBITDEPTH
308 } else if (arg_match(&arg, &bitdepth_arg, argi)) {
309 enc_cfg->g_bit_depth = arg_parse_enum_or_int(&arg);
310 switch (enc_cfg->g_bit_depth) {
311 case AOM_BITS_8:
312 enc_cfg->g_input_bit_depth = 8;
313 enc_cfg->g_profile = 0;
314 break;
315 case AOM_BITS_10:
316 enc_cfg->g_input_bit_depth = 10;
317 enc_cfg->g_profile = 2;
318 break;
319 case AOM_BITS_12:
320 enc_cfg->g_input_bit_depth = 12;
321 enc_cfg->g_profile = 2;
322 break;
323 default:
324 die("Error: Invalid bit depth selected (%d)\n", enc_cfg->g_bit_depth);
325 break;
326 }
327#endif // CONFIG_VP9_HIGHBITDEPTH
328 } else if (arg_match(&arg, &dropframe_thresh_arg, argi)) {
329 enc_cfg->rc_dropframe_thresh = arg_parse_uint(&arg);
330 } else if (arg_match(&arg, &error_resilient_arg, argi)) {
331 enc_cfg->g_error_resilient = arg_parse_uint(&arg);
332 if (enc_cfg->g_error_resilient != 0 && enc_cfg->g_error_resilient != 1)
333 die("Invalid value for error resilient (0, 1): %d.",
334 enc_cfg->g_error_resilient);
335 } else if (arg_match(&arg, &output_obu_arg, argi)) {
336 app_input->output_obu = arg_parse_uint(&arg);
337 if (app_input->output_obu != 0 && app_input->output_obu != 1)
338 die("Invalid value for obu output flag (0, 1): %d.",
339 app_input->output_obu);
340 } else {
341 ++argj;
342 }
343 }
344
345 // Total bitrate needs to be parsed after the number of layers.
346 for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) {
347 arg.argv_step = 1;
348 if (arg_match(&arg, &bitrates_arg, argi)) {
349 parse_layer_options_from_string(svc_params, BITRATE, arg.val,
350 svc_params->layer_target_bitrate, NULL);
351 } else {
352 ++argj;
353 }
354 }
355
356 // There will be a space in front of the string options
357 if (strlen(string_options) > 0)
358 strncpy(app_input->options, string_options, OPTION_BUFFER_SIZE);
359
360 // Check for unrecognized options
361 for (argi = argv; *argi; ++argi)
362 if (argi[0][0] == '-' && strlen(argi[0]) > 1)
363 die("Error: Unrecognized option %s\n", *argi);
364
365 if (argv[0] == NULL) {
366 usage_exit();
367 }
368
369 app_input->input_ctx.filename = argv[0];
370 free(argv);
371
372 open_input_file(&app_input->input_ctx, 0);
373 if (app_input->input_ctx.file_type == FILE_TYPE_Y4M) {
374 enc_cfg->g_w = app_input->input_ctx.width;
375 enc_cfg->g_h = app_input->input_ctx.height;
376 }
377
378 if (enc_cfg->g_w < 16 || enc_cfg->g_w % 2 || enc_cfg->g_h < 16 ||
379 enc_cfg->g_h % 2)
380 die("Invalid resolution: %d x %d\n", enc_cfg->g_w, enc_cfg->g_h);
381
382 printf(
383 "Codec %s\n"
384 "layers: %d\n"
385 "width %u, height: %u\n"
386 "num: %d, den: %d, bitrate: %u\n"
387 "gop size: %u\n",
389 svc_params->number_spatial_layers, enc_cfg->g_w, enc_cfg->g_h,
390 enc_cfg->g_timebase.num, enc_cfg->g_timebase.den,
391 enc_cfg->rc_target_bitrate, enc_cfg->kf_max_dist);
392}
393
394static unsigned int mode_to_num_temporal_layers[11] = { 1, 2, 3, 3, 2, 1,
395 1, 3, 3, 3, 3 };
396static unsigned int mode_to_num_spatial_layers[11] = { 1, 1, 1, 1, 1, 2,
397 3, 2, 3, 3, 3 };
398
399// For rate control encoding stats.
400struct RateControlMetrics {
401 // Number of input frames per layer.
402 int layer_input_frames[AOM_MAX_TS_LAYERS];
403 // Number of encoded non-key frames per layer.
404 int layer_enc_frames[AOM_MAX_TS_LAYERS];
405 // Framerate per layer layer (cumulative).
406 double layer_framerate[AOM_MAX_TS_LAYERS];
407 // Target average frame size per layer (per-frame-bandwidth per layer).
408 double layer_pfb[AOM_MAX_LAYERS];
409 // Actual average frame size per layer.
410 double layer_avg_frame_size[AOM_MAX_LAYERS];
411 // Average rate mismatch per layer (|target - actual| / target).
412 double layer_avg_rate_mismatch[AOM_MAX_LAYERS];
413 // Actual encoding bitrate per layer (cumulative across temporal layers).
414 double layer_encoding_bitrate[AOM_MAX_LAYERS];
415 // Average of the short-time encoder actual bitrate.
416 // TODO(marpan): Should we add these short-time stats for each layer?
417 double avg_st_encoding_bitrate;
418 // Variance of the short-time encoder actual bitrate.
419 double variance_st_encoding_bitrate;
420 // Window (number of frames) for computing short-timee encoding bitrate.
421 int window_size;
422 // Number of window measurements.
423 int window_count;
424 int layer_target_bitrate[AOM_MAX_LAYERS];
425};
426
427// Reference frames used in this example encoder.
428enum {
429 SVC_LAST_FRAME = 0,
430 SVC_LAST2_FRAME,
431 SVC_LAST3_FRAME,
432 SVC_GOLDEN_FRAME,
433 SVC_BWDREF_FRAME,
434 SVC_ALTREF2_FRAME,
435 SVC_ALTREF_FRAME
436};
437
438static int read_frame(struct AvxInputContext *input_ctx, aom_image_t *img) {
439 FILE *f = input_ctx->file;
440 y4m_input *y4m = &input_ctx->y4m;
441 int shortread = 0;
442
443 if (input_ctx->file_type == FILE_TYPE_Y4M) {
444 if (y4m_input_fetch_frame(y4m, f, img) < 1) return 0;
445 } else {
446 shortread = read_yuv_frame(input_ctx, img);
447 }
448
449 return !shortread;
450}
451
452static void close_input_file(struct AvxInputContext *input) {
453 fclose(input->file);
454 if (input->file_type == FILE_TYPE_Y4M) y4m_input_close(&input->y4m);
455}
456
457// Note: these rate control metrics assume only 1 key frame in the
458// sequence (i.e., first frame only). So for temporal pattern# 7
459// (which has key frame for every frame on base layer), the metrics
460// computation will be off/wrong.
461// TODO(marpan): Update these metrics to account for multiple key frames
462// in the stream.
463static void set_rate_control_metrics(struct RateControlMetrics *rc,
464 double framerate,
465 unsigned int ss_number_layers,
466 unsigned int ts_number_layers) {
467 int ts_rate_decimator[AOM_MAX_TS_LAYERS] = { 1 };
468 ts_rate_decimator[0] = 1;
469 if (ts_number_layers == 2) {
470 ts_rate_decimator[0] = 2;
471 ts_rate_decimator[1] = 1;
472 }
473 if (ts_number_layers == 3) {
474 ts_rate_decimator[0] = 4;
475 ts_rate_decimator[1] = 2;
476 ts_rate_decimator[2] = 1;
477 }
478 // Set the layer (cumulative) framerate and the target layer (non-cumulative)
479 // per-frame-bandwidth, for the rate control encoding stats below.
480 for (unsigned int sl = 0; sl < ss_number_layers; ++sl) {
481 unsigned int i = sl * ts_number_layers;
482 rc->layer_framerate[0] = framerate / ts_rate_decimator[0];
483 rc->layer_pfb[i] =
484 1000.0 * rc->layer_target_bitrate[i] / rc->layer_framerate[0];
485 for (unsigned int tl = 0; tl < ts_number_layers; ++tl) {
486 i = sl * ts_number_layers + tl;
487 if (tl > 0) {
488 rc->layer_framerate[tl] = framerate / ts_rate_decimator[tl];
489 rc->layer_pfb[i] =
490 1000.0 *
491 (rc->layer_target_bitrate[i] - rc->layer_target_bitrate[i - 1]) /
492 (rc->layer_framerate[tl] - rc->layer_framerate[tl - 1]);
493 }
494 rc->layer_input_frames[tl] = 0;
495 rc->layer_enc_frames[tl] = 0;
496 rc->layer_encoding_bitrate[i] = 0.0;
497 rc->layer_avg_frame_size[i] = 0.0;
498 rc->layer_avg_rate_mismatch[i] = 0.0;
499 }
500 }
501 rc->window_count = 0;
502 rc->window_size = 15;
503 rc->avg_st_encoding_bitrate = 0.0;
504 rc->variance_st_encoding_bitrate = 0.0;
505}
506
507static void printout_rate_control_summary(struct RateControlMetrics *rc,
508 int frame_cnt,
509 unsigned int ss_number_layers,
510 unsigned int ts_number_layers) {
511 int tot_num_frames = 0;
512 double perc_fluctuation = 0.0;
513 printf("Total number of processed frames: %d\n\n", frame_cnt - 1);
514 printf("Rate control layer stats for %u layer(s):\n\n", ts_number_layers);
515 for (unsigned int sl = 0; sl < ss_number_layers; ++sl) {
516 tot_num_frames = 0;
517 for (unsigned int tl = 0; tl < ts_number_layers; ++tl) {
518 unsigned int i = sl * ts_number_layers + tl;
519 const int num_dropped =
520 tl > 0 ? rc->layer_input_frames[tl] - rc->layer_enc_frames[tl]
521 : rc->layer_input_frames[tl] - rc->layer_enc_frames[tl] - 1;
522 tot_num_frames += rc->layer_input_frames[tl];
523 rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[tl] *
524 rc->layer_encoding_bitrate[i] /
525 tot_num_frames;
526 rc->layer_avg_frame_size[i] =
527 rc->layer_avg_frame_size[i] / rc->layer_enc_frames[tl];
528 rc->layer_avg_rate_mismatch[i] =
529 100.0 * rc->layer_avg_rate_mismatch[i] / rc->layer_enc_frames[tl];
530 printf("For layer#: %u %u \n", sl, tl);
531 printf("Bitrate (target vs actual): %d %f\n", rc->layer_target_bitrate[i],
532 rc->layer_encoding_bitrate[i]);
533 printf("Average frame size (target vs actual): %f %f\n", rc->layer_pfb[i],
534 rc->layer_avg_frame_size[i]);
535 printf("Average rate_mismatch: %f\n", rc->layer_avg_rate_mismatch[i]);
536 printf(
537 "Number of input frames, encoded (non-key) frames, "
538 "and perc dropped frames: %d %d %f\n",
539 rc->layer_input_frames[tl], rc->layer_enc_frames[tl],
540 100.0 * num_dropped / rc->layer_input_frames[tl]);
541 printf("\n");
542 }
543 }
544 rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count;
545 rc->variance_st_encoding_bitrate =
546 rc->variance_st_encoding_bitrate / rc->window_count -
547 (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate);
548 perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) /
549 rc->avg_st_encoding_bitrate;
550 printf("Short-time stats, for window of %d frames:\n", rc->window_size);
551 printf("Average, rms-variance, and percent-fluct: %f %f %f\n",
552 rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate),
553 perc_fluctuation);
554 if (frame_cnt - 1 != tot_num_frames)
555 die("Error: Number of input frames not equal to output!\n");
556}
557
558// Layer pattern configuration.
559static void set_layer_pattern(
560 int layering_mode, int superframe_cnt, aom_svc_layer_id_t *layer_id,
561 aom_svc_ref_frame_config_t *ref_frame_config,
562 aom_svc_ref_frame_comp_pred_t *ref_frame_comp_pred, int *use_svc_control,
563 int spatial_layer_id, int is_key_frame, int ksvc_mode, int speed) {
564 int i;
565 int enable_longterm_temporal_ref = 1;
566 int shift = (layering_mode == 8) ? 2 : 0;
567 *use_svc_control = 1;
568 layer_id->spatial_layer_id = spatial_layer_id;
569 int lag_index = 0;
570 int base_count = superframe_cnt >> 2;
571 ref_frame_comp_pred->use_comp_pred[0] = 0; // GOLDEN_LAST
572 ref_frame_comp_pred->use_comp_pred[1] = 0; // LAST2_LAST
573 ref_frame_comp_pred->use_comp_pred[2] = 0; // ALTREF_LAST
574 // Set the reference map buffer idx for the 7 references:
575 // LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3),
576 // BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6).
577 for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = i;
578 for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->reference[i] = 0;
579 for (i = 0; i < REF_FRAMES; i++) ref_frame_config->refresh[i] = 0;
580
581 if (ksvc_mode) {
582 // Same pattern as case 9, but the reference strucutre will be constrained
583 // below.
584 layering_mode = 9;
585 }
586 switch (layering_mode) {
587 case 0:
588 // 1-layer: update LAST on every frame, reference LAST.
589 layer_id->temporal_layer_id = 0;
590 ref_frame_config->refresh[0] = 1;
591 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
592 break;
593 case 1:
594 // 2-temporal layer.
595 // 1 3 5
596 // 0 2 4
597 if (superframe_cnt % 2 == 0) {
598 layer_id->temporal_layer_id = 0;
599 // Update LAST on layer 0, reference LAST.
600 ref_frame_config->refresh[0] = 1;
601 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
602 } else {
603 layer_id->temporal_layer_id = 1;
604 // No updates on layer 1, only reference LAST (TL0).
605 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
606 }
607 break;
608 case 2:
609 // 3-temporal layer:
610 // 1 3 5 7
611 // 2 6
612 // 0 4 8
613 if (superframe_cnt % 4 == 0) {
614 // Base layer.
615 layer_id->temporal_layer_id = 0;
616 // Update LAST on layer 0, reference LAST.
617 ref_frame_config->refresh[0] = 1;
618 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
619 } else if ((superframe_cnt - 1) % 4 == 0) {
620 layer_id->temporal_layer_id = 2;
621 // First top layer: no updates, only reference LAST (TL0).
622 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
623 } else if ((superframe_cnt - 2) % 4 == 0) {
624 layer_id->temporal_layer_id = 1;
625 // Middle layer (TL1): update LAST2, only reference LAST (TL0).
626 ref_frame_config->refresh[1] = 1;
627 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
628 } else if ((superframe_cnt - 3) % 4 == 0) {
629 layer_id->temporal_layer_id = 2;
630 // Second top layer: no updates, only reference LAST.
631 // Set buffer idx for LAST to slot 1, since that was the slot
632 // updated in previous frame. So LAST is TL1 frame.
633 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
634 ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 0;
635 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
636 }
637 break;
638 case 3:
639 // 3 TL, same as above, except allow for predicting
640 // off 2 more references (GOLDEN and ALTREF), with
641 // GOLDEN updated periodically, and ALTREF lagging from
642 // LAST from ~4 frames. Both GOLDEN and ALTREF
643 // can only be updated on base temporal layer.
644
645 // Keep golden fixed at slot 3.
646 ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
647 // Cyclically refresh slots 5, 6, 7, for lag altref.
648 lag_index = 5;
649 if (base_count > 0) {
650 lag_index = 5 + (base_count % 3);
651 if (superframe_cnt % 4 != 0) lag_index = 5 + ((base_count + 1) % 3);
652 }
653 // Set the altref slot to lag_index.
654 ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = lag_index;
655 if (superframe_cnt % 4 == 0) {
656 // Base layer.
657 layer_id->temporal_layer_id = 0;
658 // Update LAST on layer 0, reference LAST.
659 ref_frame_config->refresh[0] = 1;
660 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
661 // Refresh GOLDEN every x ~10 base layer frames.
662 if (base_count % 10 == 0) ref_frame_config->refresh[3] = 1;
663 // Refresh lag_index slot, needed for lagging altref.
664 ref_frame_config->refresh[lag_index] = 1;
665 } else if ((superframe_cnt - 1) % 4 == 0) {
666 layer_id->temporal_layer_id = 2;
667 // First top layer: no updates, only reference LAST (TL0).
668 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
669 } else if ((superframe_cnt - 2) % 4 == 0) {
670 layer_id->temporal_layer_id = 1;
671 // Middle layer (TL1): update LAST2, only reference LAST (TL0).
672 ref_frame_config->refresh[1] = 1;
673 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
674 } else if ((superframe_cnt - 3) % 4 == 0) {
675 layer_id->temporal_layer_id = 2;
676 // Second top layer: no updates, only reference LAST.
677 // Set buffer idx for LAST to slot 1, since that was the slot
678 // updated in previous frame. So LAST is TL1 frame.
679 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
680 ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 0;
681 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
682 }
683 // Every frame can reference GOLDEN AND ALTREF.
684 ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
685 ref_frame_config->reference[SVC_ALTREF_FRAME] = 1;
686 // Allow for compound prediction using LAST and ALTREF.
687 if (speed >= 7) ref_frame_comp_pred->use_comp_pred[2] = 1;
688 break;
689 case 4:
690 // 3-temporal layer: but middle layer updates GF, so 2nd TL2 will
691 // only reference GF (not LAST). Other frames only reference LAST.
692 // 1 3 5 7
693 // 2 6
694 // 0 4 8
695 if (superframe_cnt % 4 == 0) {
696 // Base layer.
697 layer_id->temporal_layer_id = 0;
698 // Update LAST on layer 0, only reference LAST.
699 ref_frame_config->refresh[0] = 1;
700 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
701 } else if ((superframe_cnt - 1) % 4 == 0) {
702 layer_id->temporal_layer_id = 2;
703 // First top layer: no updates, only reference LAST (TL0).
704 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
705 } else if ((superframe_cnt - 2) % 4 == 0) {
706 layer_id->temporal_layer_id = 1;
707 // Middle layer (TL1): update GF, only reference LAST (TL0).
708 ref_frame_config->refresh[3] = 1;
709 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
710 } else if ((superframe_cnt - 3) % 4 == 0) {
711 layer_id->temporal_layer_id = 2;
712 // Second top layer: no updates, only reference GF.
713 ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
714 }
715 break;
716 case 5:
717 // 2 spatial layers, 1 temporal.
718 layer_id->temporal_layer_id = 0;
719 if (layer_id->spatial_layer_id == 0) {
720 // Reference LAST, update LAST.
721 ref_frame_config->refresh[0] = 1;
722 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
723 } else if (layer_id->spatial_layer_id == 1) {
724 // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1
725 // and GOLDEN to slot 0. Update slot 1 (LAST).
726 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
727 ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 0;
728 ref_frame_config->refresh[1] = 1;
729 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
730 ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
731 }
732 break;
733 case 6:
734 // 3 spatial layers, 1 temporal.
735 // Note for this case, we set the buffer idx for all references to be
736 // either LAST or GOLDEN, which are always valid references, since decoder
737 // will check if any of the 7 references is valid scale in
738 // valid_ref_frame_size().
739 layer_id->temporal_layer_id = 0;
740 if (layer_id->spatial_layer_id == 0) {
741 // Reference LAST, update LAST. Set all buffer_idx to 0.
742 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
743 ref_frame_config->ref_idx[i] = 0;
744 ref_frame_config->refresh[0] = 1;
745 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
746 } else if (layer_id->spatial_layer_id == 1) {
747 // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1
748 // and GOLDEN (and all other refs) to slot 0.
749 // Update slot 1 (LAST).
750 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
751 ref_frame_config->ref_idx[i] = 0;
752 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
753 ref_frame_config->refresh[1] = 1;
754 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
755 ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
756 } else if (layer_id->spatial_layer_id == 2) {
757 // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2
758 // and GOLDEN (and all other refs) to slot 1.
759 // Update slot 2 (LAST).
760 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
761 ref_frame_config->ref_idx[i] = 1;
762 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
763 ref_frame_config->refresh[2] = 1;
764 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
765 ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
766 // For 3 spatial layer case: allow for top spatial layer to use
767 // additional temporal reference. Update every 10 frames.
768 if (enable_longterm_temporal_ref) {
769 ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = REF_FRAMES - 1;
770 ref_frame_config->reference[SVC_ALTREF_FRAME] = 1;
771 if (base_count % 10 == 0)
772 ref_frame_config->refresh[REF_FRAMES - 1] = 1;
773 }
774 }
775 break;
776 case 7:
777 // 2 spatial and 3 temporal layer.
778 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
779 if (superframe_cnt % 4 == 0) {
780 // Base temporal layer
781 layer_id->temporal_layer_id = 0;
782 if (layer_id->spatial_layer_id == 0) {
783 // Reference LAST, update LAST
784 // Set all buffer_idx to 0
785 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
786 ref_frame_config->ref_idx[i] = 0;
787 ref_frame_config->refresh[0] = 1;
788 } else if (layer_id->spatial_layer_id == 1) {
789 // Reference LAST and GOLDEN.
790 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
791 ref_frame_config->ref_idx[i] = 0;
792 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
793 ref_frame_config->refresh[1] = 1;
794 }
795 } else if ((superframe_cnt - 1) % 4 == 0) {
796 // First top temporal enhancement layer.
797 layer_id->temporal_layer_id = 2;
798 if (layer_id->spatial_layer_id == 0) {
799 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
800 ref_frame_config->ref_idx[i] = 0;
801 ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
802 ref_frame_config->refresh[3] = 1;
803 } else if (layer_id->spatial_layer_id == 1) {
804 // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
805 // GOLDEN (and all other refs) to slot 3.
806 // No update.
807 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
808 ref_frame_config->ref_idx[i] = 3;
809 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
810 }
811 } else if ((superframe_cnt - 2) % 4 == 0) {
812 // Middle temporal enhancement layer.
813 layer_id->temporal_layer_id = 1;
814 if (layer_id->spatial_layer_id == 0) {
815 // Reference LAST.
816 // Set all buffer_idx to 0.
817 // Set GOLDEN to slot 5 and update slot 5.
818 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
819 ref_frame_config->ref_idx[i] = 0;
820 ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 5 - shift;
821 ref_frame_config->refresh[5 - shift] = 1;
822 } else if (layer_id->spatial_layer_id == 1) {
823 // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
824 // GOLDEN (and all other refs) to slot 5.
825 // Set LAST3 to slot 6 and update slot 6.
826 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
827 ref_frame_config->ref_idx[i] = 5 - shift;
828 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
829 ref_frame_config->ref_idx[SVC_LAST3_FRAME] = 6 - shift;
830 ref_frame_config->refresh[6 - shift] = 1;
831 }
832 } else if ((superframe_cnt - 3) % 4 == 0) {
833 // Second top temporal enhancement layer.
834 layer_id->temporal_layer_id = 2;
835 if (layer_id->spatial_layer_id == 0) {
836 // Set LAST to slot 5 and reference LAST.
837 // Set GOLDEN to slot 3 and update slot 3.
838 // Set all other buffer_idx to 0.
839 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
840 ref_frame_config->ref_idx[i] = 0;
841 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 5 - shift;
842 ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
843 ref_frame_config->refresh[3] = 1;
844 } else if (layer_id->spatial_layer_id == 1) {
845 // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 6,
846 // GOLDEN to slot 3. No update.
847 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
848 ref_frame_config->ref_idx[i] = 0;
849 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 6 - shift;
850 ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
851 }
852 }
853 break;
854 case 8:
855 // 3 spatial and 3 temporal layer.
856 // Same as case 9 but overalap in the buffer slot updates.
857 // (shift = 2). The slots 3 and 4 updated by first TL2 are
858 // reused for update in TL1 superframe.
859 // Note for this case, frame order hint must be disabled for
860 // lower resolutios (operating points > 0) to be decoedable.
861 case 9:
862 // 3 spatial and 3 temporal layer.
863 // No overlap in buffer updates between TL2 and TL1.
864 // TL2 updates slot 3 and 4, TL1 updates 5, 6, 7.
865 // Set the references via the svc_ref_frame_config control.
866 // Always reference LAST.
867 ref_frame_config->reference[SVC_LAST_FRAME] = 1;
868 if (superframe_cnt % 4 == 0) {
869 // Base temporal layer.
870 layer_id->temporal_layer_id = 0;
871 if (layer_id->spatial_layer_id == 0) {
872 // Reference LAST, update LAST.
873 // Set all buffer_idx to 0.
874 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
875 ref_frame_config->ref_idx[i] = 0;
876 ref_frame_config->refresh[0] = 1;
877 } else if (layer_id->spatial_layer_id == 1) {
878 // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
879 // GOLDEN (and all other refs) to slot 0.
880 // Update slot 1 (LAST).
881 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
882 ref_frame_config->ref_idx[i] = 0;
883 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
884 ref_frame_config->refresh[1] = 1;
885 } else if (layer_id->spatial_layer_id == 2) {
886 // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
887 // GOLDEN (and all other refs) to slot 1.
888 // Update slot 2 (LAST).
889 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
890 ref_frame_config->ref_idx[i] = 1;
891 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
892 ref_frame_config->refresh[2] = 1;
893 }
894 } else if ((superframe_cnt - 1) % 4 == 0) {
895 // First top temporal enhancement layer.
896 layer_id->temporal_layer_id = 2;
897 if (layer_id->spatial_layer_id == 0) {
898 // Reference LAST (slot 0).
899 // Set GOLDEN to slot 3 and update slot 3.
900 // Set all other buffer_idx to slot 0.
901 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
902 ref_frame_config->ref_idx[i] = 0;
903 ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
904 ref_frame_config->refresh[3] = 1;
905 } else if (layer_id->spatial_layer_id == 1) {
906 // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
907 // GOLDEN (and all other refs) to slot 3.
908 // Set LAST2 to slot 4 and Update slot 4.
909 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
910 ref_frame_config->ref_idx[i] = 3;
911 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
912 ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 4;
913 ref_frame_config->refresh[4] = 1;
914 } else if (layer_id->spatial_layer_id == 2) {
915 // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
916 // GOLDEN (and all other refs) to slot 4.
917 // No update.
918 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
919 ref_frame_config->ref_idx[i] = 4;
920 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
921 }
922 } else if ((superframe_cnt - 2) % 4 == 0) {
923 // Middle temporal enhancement layer.
924 layer_id->temporal_layer_id = 1;
925 if (layer_id->spatial_layer_id == 0) {
926 // Reference LAST.
927 // Set all buffer_idx to 0.
928 // Set GOLDEN to slot 5 and update slot 5.
929 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
930 ref_frame_config->ref_idx[i] = 0;
931 ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 5 - shift;
932 ref_frame_config->refresh[5 - shift] = 1;
933 } else if (layer_id->spatial_layer_id == 1) {
934 // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
935 // GOLDEN (and all other refs) to slot 5.
936 // Set LAST3 to slot 6 and update slot 6.
937 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
938 ref_frame_config->ref_idx[i] = 5 - shift;
939 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
940 ref_frame_config->ref_idx[SVC_LAST3_FRAME] = 6 - shift;
941 ref_frame_config->refresh[6 - shift] = 1;
942 } else if (layer_id->spatial_layer_id == 2) {
943 // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
944 // GOLDEN (and all other refs) to slot 6.
945 // Set LAST3 to slot 7 and update slot 7.
946 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
947 ref_frame_config->ref_idx[i] = 6 - shift;
948 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
949 ref_frame_config->ref_idx[SVC_LAST3_FRAME] = 7 - shift;
950 ref_frame_config->refresh[7 - shift] = 1;
951 }
952 } else if ((superframe_cnt - 3) % 4 == 0) {
953 // Second top temporal enhancement layer.
954 layer_id->temporal_layer_id = 2;
955 if (layer_id->spatial_layer_id == 0) {
956 // Set LAST to slot 5 and reference LAST.
957 // Set GOLDEN to slot 3 and update slot 3.
958 // Set all other buffer_idx to 0.
959 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
960 ref_frame_config->ref_idx[i] = 0;
961 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 5 - shift;
962 ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
963 ref_frame_config->refresh[3] = 1;
964 } else if (layer_id->spatial_layer_id == 1) {
965 // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 6,
966 // GOLDEN to slot 3. Set LAST2 to slot 4 and update slot 4.
967 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
968 ref_frame_config->ref_idx[i] = 0;
969 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 6 - shift;
970 ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
971 ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 4;
972 ref_frame_config->refresh[4] = 1;
973 } else if (layer_id->spatial_layer_id == 2) {
974 // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 7,
975 // GOLDEN to slot 4. No update.
976 for (i = 0; i < INTER_REFS_PER_FRAME; i++)
977 ref_frame_config->ref_idx[i] = 0;
978 ref_frame_config->ref_idx[SVC_LAST_FRAME] = 7 - shift;
979 ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 4;
980 }
981 }
982 if (layer_id->spatial_layer_id > 0) {
983 // Always reference GOLDEN (inter-layer prediction).
984 ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
985 if (ksvc_mode) {
986 // KSVC: only keep the inter-layer reference (GOLDEN) for
987 // superframes whose base is key.
988 if (!is_key_frame) ref_frame_config->reference[SVC_GOLDEN_FRAME] = 0;
989 }
990 if (is_key_frame && layer_id->spatial_layer_id > 1) {
991 // On superframes whose base is key: remove LAST to avoid prediction
992 // off layer two levels below.
993 ref_frame_config->reference[SVC_LAST_FRAME] = 0;
994 }
995 }
996 // For 3 spatial layer case 8 (where there is free buffer slot):
997 // allow for top spatial layer to use additional temporal reference.
998 // Additional reference is only updated on base temporal layer, every
999 // 10 TL0 frames here.
1000 if (enable_longterm_temporal_ref && layer_id->spatial_layer_id == 2 &&
1001 layering_mode == 8) {
1002 ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = REF_FRAMES - 1;
1003 ref_frame_config->reference[SVC_ALTREF_FRAME] = 1;
1004 if (base_count % 10 == 0 && layer_id->temporal_layer_id == 0)
1005 ref_frame_config->refresh[REF_FRAMES - 1] = 1;
1006 }
1007 break;
1008 default: assert(0); die("Error: Unsupported temporal layering mode!\n");
1009 }
1010}
1011
1012#if CONFIG_AV1_DECODER
1013static void test_decode(aom_codec_ctx_t *encoder, aom_codec_ctx_t *decoder,
1014 const int frames_out, int *mismatch_seen) {
1015 aom_image_t enc_img, dec_img;
1016
1017 if (*mismatch_seen) return;
1018
1019 /* Get the internal reference frame */
1022
1023#if CONFIG_AV1_HIGHBITDEPTH
1024 if ((enc_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) !=
1025 (dec_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH)) {
1026 if (enc_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) {
1027 aom_image_t enc_hbd_img;
1028 aom_img_alloc(&enc_hbd_img, enc_img.fmt - AOM_IMG_FMT_HIGHBITDEPTH,
1029 enc_img.d_w, enc_img.d_h, 16);
1030 aom_img_truncate_16_to_8(&enc_hbd_img, &enc_img);
1031 enc_img = enc_hbd_img;
1032 }
1033 if (dec_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) {
1034 aom_image_t dec_hbd_img;
1035 aom_img_alloc(&dec_hbd_img, dec_img.fmt - AOM_IMG_FMT_HIGHBITDEPTH,
1036 dec_img.d_w, dec_img.d_h, 16);
1037 aom_img_truncate_16_to_8(&dec_hbd_img, &dec_img);
1038 dec_img = dec_hbd_img;
1039 }
1040 }
1041#endif
1042
1043 if (!aom_compare_img(&enc_img, &dec_img)) {
1044 int y[4], u[4], v[4];
1045#if CONFIG_AV1_HIGHBITDEPTH
1046 if (enc_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) {
1047 aom_find_mismatch_high(&enc_img, &dec_img, y, u, v);
1048 } else {
1049 aom_find_mismatch(&enc_img, &dec_img, y, u, v);
1050 }
1051#else
1052 aom_find_mismatch(&enc_img, &dec_img, y, u, v);
1053#endif
1054 decoder->err = 1;
1055 printf(
1056 "Encode/decode mismatch on frame %d at"
1057 " Y[%d, %d] {%d/%d},"
1058 " U[%d, %d] {%d/%d},"
1059 " V[%d, %d] {%d/%d}",
1060 frames_out, y[0], y[1], y[2], y[3], u[0], u[1], u[2], u[3], v[0], v[1],
1061 v[2], v[3]);
1062 *mismatch_seen = frames_out;
1063 }
1064
1065 aom_img_free(&enc_img);
1066 aom_img_free(&dec_img);
1067}
1068#endif // CONFIG_AV1_DECODER
1069
1070int main(int argc, const char **argv) {
1071 AppInput app_input;
1072 AvxVideoWriter *outfile[AOM_MAX_LAYERS] = { NULL };
1073 FILE *obu_files[AOM_MAX_LAYERS] = { NULL };
1074 AvxVideoWriter *total_layer_file = NULL;
1075 FILE *total_layer_obu_file = NULL;
1077 int frame_cnt = 0;
1078 aom_image_t raw;
1079 int frame_avail;
1080 int got_data = 0;
1081 int flags = 0;
1082 unsigned i;
1083 int pts = 0; // PTS starts at 0.
1084 int frame_duration = 1; // 1 timebase tick per frame.
1085 aom_svc_layer_id_t layer_id;
1086 aom_svc_params_t svc_params;
1087 aom_svc_ref_frame_config_t ref_frame_config;
1088 aom_svc_ref_frame_comp_pred_t ref_frame_comp_pred;
1089
1090#if CONFIG_INTERNAL_STATS
1091 FILE *stats_file = fopen("opsnr.stt", "a");
1092 if (stats_file == NULL) {
1093 die("Cannot open opsnr.stt\n");
1094 }
1095#endif
1096#if CONFIG_AV1_DECODER
1097 int mismatch_seen = 0;
1098 aom_codec_ctx_t decoder;
1099#endif
1100
1101 struct RateControlMetrics rc;
1102 int64_t cx_time = 0;
1103 int64_t cx_time_sl[3]; // max number of spatial layers.
1104 double sum_bitrate = 0.0;
1105 double sum_bitrate2 = 0.0;
1106 double framerate = 30.0;
1107 int use_svc_control = 1;
1108 int set_err_resil_frame = 0;
1109 zero(rc.layer_target_bitrate);
1110 memset(&layer_id, 0, sizeof(aom_svc_layer_id_t));
1111 memset(&app_input, 0, sizeof(AppInput));
1112 memset(&svc_params, 0, sizeof(svc_params));
1113
1114 // Flag to test dynamic scaling of source frames for single
1115 // spatial stream, using the scaling_mode control.
1116 const int test_dynamic_scaling_single_layer = 0;
1117
1118 /* Setup default input stream settings */
1119 app_input.input_ctx.framerate.numerator = 30;
1120 app_input.input_ctx.framerate.denominator = 1;
1121 app_input.input_ctx.only_i420 = 1;
1122 app_input.input_ctx.bit_depth = 0;
1123 app_input.speed = 7;
1124 exec_name = argv[0];
1125
1126 // start with default encoder configuration
1129 if (res) {
1130 die("Failed to get config: %s\n", aom_codec_err_to_string(res));
1131 }
1132
1133 // Real time parameters.
1135
1136 cfg.rc_end_usage = AOM_CBR;
1137 cfg.rc_min_quantizer = 2;
1138 cfg.rc_max_quantizer = 52;
1139 cfg.rc_undershoot_pct = 50;
1140 cfg.rc_overshoot_pct = 50;
1141 cfg.rc_buf_initial_sz = 600;
1142 cfg.rc_buf_optimal_sz = 600;
1143 cfg.rc_buf_sz = 1000;
1144 cfg.rc_resize_mode = 0; // Set to RESIZE_DYNAMIC for dynamic resize.
1145 cfg.g_lag_in_frames = 0;
1146 cfg.kf_mode = AOM_KF_AUTO;
1147
1148 parse_command_line(argc, argv, &app_input, &svc_params, &cfg);
1149
1150 unsigned int ts_number_layers = svc_params.number_temporal_layers;
1151 unsigned int ss_number_layers = svc_params.number_spatial_layers;
1152
1153 unsigned int width = cfg.g_w;
1154 unsigned int height = cfg.g_h;
1155
1156 if (app_input.layering_mode >= 0) {
1157 if (ts_number_layers !=
1158 mode_to_num_temporal_layers[app_input.layering_mode] ||
1159 ss_number_layers !=
1160 mode_to_num_spatial_layers[app_input.layering_mode]) {
1161 die("Number of layers doesn't match layering mode.");
1162 }
1163 }
1164
1165 // Y4M reader has its own allocation.
1166 if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) {
1167 if (!aom_img_alloc(&raw, AOM_IMG_FMT_I420, width, height, 32)) {
1168 die("Failed to allocate image (%dx%d)", width, height);
1169 }
1170 }
1171
1172 aom_codec_iface_t *encoder = get_aom_encoder_by_short_name("av1");
1173
1174 memcpy(&rc.layer_target_bitrate[0], &svc_params.layer_target_bitrate[0],
1175 sizeof(svc_params.layer_target_bitrate));
1176
1177 unsigned int total_rate = 0;
1178 for (i = 0; i < ss_number_layers; i++) {
1179 total_rate +=
1180 svc_params
1181 .layer_target_bitrate[i * ts_number_layers + ts_number_layers - 1];
1182 }
1183 if (total_rate != cfg.rc_target_bitrate) {
1184 die("Incorrect total target bitrate");
1185 }
1186
1187 svc_params.framerate_factor[0] = 1;
1188 if (ts_number_layers == 2) {
1189 svc_params.framerate_factor[0] = 2;
1190 svc_params.framerate_factor[1] = 1;
1191 } else if (ts_number_layers == 3) {
1192 svc_params.framerate_factor[0] = 4;
1193 svc_params.framerate_factor[1] = 2;
1194 svc_params.framerate_factor[2] = 1;
1195 }
1196
1197 if (app_input.input_ctx.file_type == FILE_TYPE_Y4M) {
1198 // Override these settings with the info from Y4M file.
1199 cfg.g_w = app_input.input_ctx.width;
1200 cfg.g_h = app_input.input_ctx.height;
1201 // g_timebase is the reciprocal of frame rate.
1202 cfg.g_timebase.num = app_input.input_ctx.framerate.denominator;
1203 cfg.g_timebase.den = app_input.input_ctx.framerate.numerator;
1204 }
1205 framerate = cfg.g_timebase.den / cfg.g_timebase.num;
1206 set_rate_control_metrics(&rc, framerate, ss_number_layers, ts_number_layers);
1207
1208 AvxVideoInfo info;
1209 info.codec_fourcc = get_fourcc_by_aom_encoder(encoder);
1210 info.frame_width = cfg.g_w;
1211 info.frame_height = cfg.g_h;
1212 info.time_base.numerator = cfg.g_timebase.num;
1213 info.time_base.denominator = cfg.g_timebase.den;
1214 // Open an output file for each stream.
1215 for (unsigned int sl = 0; sl < ss_number_layers; ++sl) {
1216 for (unsigned tl = 0; tl < ts_number_layers; ++tl) {
1217 i = sl * ts_number_layers + tl;
1218 char file_name[PATH_MAX];
1219 snprintf(file_name, sizeof(file_name), "%s_%u.av1",
1220 app_input.output_filename, i);
1221 if (app_input.output_obu) {
1222 obu_files[i] = fopen(file_name, "wb");
1223 if (!obu_files[i]) die("Failed to open %s for writing", file_name);
1224 } else {
1225 outfile[i] = aom_video_writer_open(file_name, kContainerIVF, &info);
1226 if (!outfile[i]) die("Failed to open %s for writing", file_name);
1227 }
1228 }
1229 }
1230 if (app_input.output_obu) {
1231 total_layer_obu_file = fopen(app_input.output_filename, "wb");
1232 if (!total_layer_obu_file)
1233 die("Failed to open %s for writing", app_input.output_filename);
1234 } else {
1235 total_layer_file =
1236 aom_video_writer_open(app_input.output_filename, kContainerIVF, &info);
1237 if (!total_layer_file)
1238 die("Failed to open %s for writing", app_input.output_filename);
1239 }
1240
1241 // Initialize codec.
1242 aom_codec_ctx_t codec;
1243 if (aom_codec_enc_init(&codec, encoder, &cfg, 0))
1244 die("Failed to initialize encoder");
1245
1246#if CONFIG_AV1_DECODER
1247 if (aom_codec_dec_init(&decoder, get_aom_decoder_by_index(0), NULL, 0)) {
1248 die("Failed to initialize decoder");
1249 }
1250#endif
1251
1252 aom_codec_control(&codec, AOME_SET_CPUUSED, app_input.speed);
1253 aom_codec_control(&codec, AV1E_SET_AQ_MODE, app_input.aq_mode ? 3 : 0);
1269 cfg.g_threads ? get_msb(cfg.g_threads) : 0);
1270 if (cfg.g_threads > 1) aom_codec_control(&codec, AV1E_SET_ROW_MT, 1);
1271
1272 svc_params.number_spatial_layers = ss_number_layers;
1273 svc_params.number_temporal_layers = ts_number_layers;
1274 for (i = 0; i < ss_number_layers * ts_number_layers; ++i) {
1275 svc_params.max_quantizers[i] = cfg.rc_max_quantizer;
1276 svc_params.min_quantizers[i] = cfg.rc_min_quantizer;
1277 }
1278 for (i = 0; i < ss_number_layers; ++i) {
1279 svc_params.scaling_factor_num[i] = 1;
1280 svc_params.scaling_factor_den[i] = 1;
1281 }
1282 if (ss_number_layers == 2) {
1283 svc_params.scaling_factor_num[0] = 1;
1284 svc_params.scaling_factor_den[0] = 2;
1285 } else if (ss_number_layers == 3) {
1286 svc_params.scaling_factor_num[0] = 1;
1287 svc_params.scaling_factor_den[0] = 4;
1288 svc_params.scaling_factor_num[1] = 1;
1289 svc_params.scaling_factor_den[1] = 2;
1290 }
1291 aom_codec_control(&codec, AV1E_SET_SVC_PARAMS, &svc_params);
1292 // TODO(aomedia:3032): Configure KSVC in fixed mode.
1293
1294 // This controls the maximum target size of the key frame.
1295 // For generating smaller key frames, use a smaller max_intra_size_pct
1296 // value, like 100 or 200.
1297 {
1298 const int max_intra_size_pct = 300;
1300 max_intra_size_pct);
1301 }
1302
1303 for (unsigned int slx = 0; slx < ss_number_layers; slx++) cx_time_sl[slx] = 0;
1304 frame_avail = 1;
1305 while (frame_avail || got_data) {
1306 struct aom_usec_timer timer;
1307 frame_avail = read_frame(&(app_input.input_ctx), &raw);
1308 // Loop over spatial layers.
1309 for (unsigned int slx = 0; slx < ss_number_layers; slx++) {
1310 aom_codec_iter_t iter = NULL;
1311 const aom_codec_cx_pkt_t *pkt;
1312 int layer = 0;
1313 // Flag for superframe whose base is key.
1314 int is_key_frame = (frame_cnt % cfg.kf_max_dist) == 0;
1315 // For flexible mode:
1316 if (app_input.layering_mode >= 0) {
1317 // Set the reference/update flags, layer_id, and reference_map
1318 // buffer index.
1319 set_layer_pattern(app_input.layering_mode, frame_cnt, &layer_id,
1320 &ref_frame_config, &ref_frame_comp_pred,
1321 &use_svc_control, slx, is_key_frame,
1322 (app_input.layering_mode == 10), app_input.speed);
1323 aom_codec_control(&codec, AV1E_SET_SVC_LAYER_ID, &layer_id);
1324 if (use_svc_control) {
1326 &ref_frame_config);
1328 &ref_frame_comp_pred);
1329 }
1330 } else {
1331 // Only up to 3 temporal layers supported in fixed mode.
1332 // Only need to set spatial and temporal layer_id: reference
1333 // prediction, refresh, and buffer_idx are set internally.
1334 layer_id.spatial_layer_id = slx;
1335 layer_id.temporal_layer_id = 0;
1336 if (ts_number_layers == 2) {
1337 layer_id.temporal_layer_id = (frame_cnt % 2) != 0;
1338 } else if (ts_number_layers == 3) {
1339 if (frame_cnt % 2 != 0)
1340 layer_id.temporal_layer_id = 2;
1341 else if ((frame_cnt > 1) && ((frame_cnt - 2) % 4 == 0))
1342 layer_id.temporal_layer_id = 1;
1343 }
1344 aom_codec_control(&codec, AV1E_SET_SVC_LAYER_ID, &layer_id);
1345 }
1346
1347 if (set_err_resil_frame) {
1348 // Set error_resilient per frame: off/0 for base layer and
1349 // on/1 for enhancement layer frames.
1350 int err_resil_mode =
1351 (layer_id.spatial_layer_id > 0 || layer_id.temporal_layer_id > 0);
1353 err_resil_mode);
1354 }
1355
1356 layer = slx * ts_number_layers + layer_id.temporal_layer_id;
1357 if (frame_avail && slx == 0) ++rc.layer_input_frames[layer];
1358
1359 if (test_dynamic_scaling_single_layer) {
1360 if (frame_cnt >= 200 && frame_cnt <= 400) {
1361 // Scale source down by 2x2.
1362 struct aom_scaling_mode mode = { AOME_ONETWO, AOME_ONETWO };
1363 aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode);
1364 } else {
1365 // Source back up to original resolution (no scaling).
1366 struct aom_scaling_mode mode = { AOME_NORMAL, AOME_NORMAL };
1367 aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode);
1368 }
1369 }
1370
1371 // Do the layer encode.
1372 aom_usec_timer_start(&timer);
1373 if (aom_codec_encode(&codec, frame_avail ? &raw : NULL, pts, 1, flags))
1374 die_codec(&codec, "Failed to encode frame");
1375 aom_usec_timer_mark(&timer);
1376 cx_time += aom_usec_timer_elapsed(&timer);
1377 cx_time_sl[slx] += aom_usec_timer_elapsed(&timer);
1378
1379 got_data = 0;
1380 while ((pkt = aom_codec_get_cx_data(&codec, &iter))) {
1381 got_data = 1;
1382 switch (pkt->kind) {
1384 for (unsigned int sl = layer_id.spatial_layer_id;
1385 sl < ss_number_layers; ++sl) {
1386 for (unsigned tl = layer_id.temporal_layer_id;
1387 tl < ts_number_layers; ++tl) {
1388 unsigned int j = sl * ts_number_layers + tl;
1389 if (app_input.output_obu) {
1390 fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz,
1391 obu_files[j]);
1392 } else {
1393 aom_video_writer_write_frame(outfile[j], pkt->data.frame.buf,
1394 pkt->data.frame.sz, pts);
1395 }
1396 if (sl == (unsigned int)layer_id.spatial_layer_id)
1397 rc.layer_encoding_bitrate[j] += 8.0 * pkt->data.frame.sz;
1398 }
1399 }
1400 // Write everything into the top layer.
1401 if (app_input.output_obu) {
1402 fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz,
1403 total_layer_obu_file);
1404 } else {
1405 aom_video_writer_write_frame(total_layer_file,
1406 pkt->data.frame.buf,
1407 pkt->data.frame.sz, pts);
1408 }
1409 // Keep count of rate control stats per layer (for non-key).
1410 if (!(pkt->data.frame.flags & AOM_FRAME_IS_KEY)) {
1411 unsigned int j = layer_id.spatial_layer_id * ts_number_layers +
1412 layer_id.temporal_layer_id;
1413 rc.layer_avg_frame_size[j] += 8.0 * pkt->data.frame.sz;
1414 rc.layer_avg_rate_mismatch[j] +=
1415 fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[j]) /
1416 rc.layer_pfb[j];
1417 if (slx == 0) ++rc.layer_enc_frames[layer_id.temporal_layer_id];
1418 }
1419
1420 // Update for short-time encoding bitrate states, for moving window
1421 // of size rc->window, shifted by rc->window / 2.
1422 // Ignore first window segment, due to key frame.
1423 // For spatial layers: only do this for top/highest SL.
1424 if (frame_cnt > rc.window_size && slx == ss_number_layers - 1) {
1425 sum_bitrate += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
1426 rc.window_size = (rc.window_size <= 0) ? 1 : rc.window_size;
1427 if (frame_cnt % rc.window_size == 0) {
1428 rc.window_count += 1;
1429 rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size;
1430 rc.variance_st_encoding_bitrate +=
1431 (sum_bitrate / rc.window_size) *
1432 (sum_bitrate / rc.window_size);
1433 sum_bitrate = 0.0;
1434 }
1435 }
1436 // Second shifted window.
1437 if (frame_cnt > rc.window_size + rc.window_size / 2 &&
1438 slx == ss_number_layers - 1) {
1439 sum_bitrate2 += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
1440 if (frame_cnt > 2 * rc.window_size &&
1441 frame_cnt % rc.window_size == 0) {
1442 rc.window_count += 1;
1443 rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size;
1444 rc.variance_st_encoding_bitrate +=
1445 (sum_bitrate2 / rc.window_size) *
1446 (sum_bitrate2 / rc.window_size);
1447 sum_bitrate2 = 0.0;
1448 }
1449 }
1450
1451#if CONFIG_AV1_DECODER
1452 if (aom_codec_decode(&decoder, pkt->data.frame.buf,
1453 (unsigned int)pkt->data.frame.sz, NULL))
1454 die_codec(&decoder, "Failed to decode frame.");
1455#endif
1456
1457 break;
1458 default: break;
1459 }
1460 }
1461#if CONFIG_AV1_DECODER
1462 // Don't look for mismatch on top spatial and top temporal layers as they
1463 // are non reference frames.
1464 if ((ss_number_layers > 1 || ts_number_layers > 1) &&
1465 !(layer_id.temporal_layer_id > 0 &&
1466 layer_id.temporal_layer_id == (int)ts_number_layers - 1)) {
1467 test_decode(&codec, &decoder, frame_cnt, &mismatch_seen);
1468 }
1469#endif
1470 } // loop over spatial layers
1471 ++frame_cnt;
1472 pts += frame_duration;
1473 }
1474
1475 close_input_file(&(app_input.input_ctx));
1476 printout_rate_control_summary(&rc, frame_cnt, ss_number_layers,
1477 ts_number_layers);
1478 printf("\n");
1479 printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f\n",
1480 frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000),
1481 1000000 * (double)frame_cnt / (double)cx_time);
1482
1483 if (ss_number_layers > 1) {
1484 printf("Per spatial layer: \n");
1485 for (unsigned int slx = 0; slx < ss_number_layers; slx++)
1486 printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f\n",
1487 frame_cnt, (float)cx_time_sl[slx] / (double)(frame_cnt * 1000),
1488 1000000 * (double)frame_cnt / (double)cx_time_sl[slx]);
1489 }
1490
1491 if (aom_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec");
1492
1493#if CONFIG_INTERNAL_STATS
1494 if (mismatch_seen) {
1495 fprintf(stats_file, "First mismatch occurred in frame %d\n", mismatch_seen);
1496 } else {
1497 fprintf(stats_file, "No mismatch detected in recon buffers\n");
1498 }
1499 fclose(stats_file);
1500#endif
1501
1502 // Try to rewrite the output file headers with the actual frame count.
1503 for (i = 0; i < ss_number_layers * ts_number_layers; ++i)
1504 aom_video_writer_close(outfile[i]);
1505 aom_video_writer_close(total_layer_file);
1506
1507 if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) {
1508 aom_img_free(&raw);
1509 }
1510 return EXIT_SUCCESS;
1511}
Describes the encoder algorithm interface to applications.
enum aom_chroma_sample_position aom_chroma_sample_position_t
List of chroma sample positions.
#define AOM_IMG_FMT_HIGHBITDEPTH
Definition: aom_image.h:38
aom_image_t * aom_img_alloc(aom_image_t *img, aom_img_fmt_t fmt, unsigned int d_w, unsigned int d_h, unsigned int align)
Open a descriptor, allocating storage for the underlying image.
@ AOM_IMG_FMT_I420
Definition: aom_image.h:45
void aom_img_free(aom_image_t *img)
Close an image descriptor.
Provides definitions for using AOM or AV1 encoder algorithm within the aom Codec Interface.
Declares top-level encoder structures and functions.
#define AOM_MAX_LAYERS
Definition: aomcx.h:1504
#define AOM_MAX_TS_LAYERS
Definition: aomcx.h:1506
aom_codec_iface_t * aom_codec_av1_cx(void)
The interface to the AV1 encoder.
@ AV1E_SET_ROW_MT
Codec control function to enable the row based multi-threading of the encoder, unsigned int parameter...
Definition: aomcx.h:359
@ AV1E_SET_ENABLE_TPL_MODEL
Codec control function to enable RDO modulated by frame temporal dependency, unsigned int parameter.
Definition: aomcx.h:406
@ AV1E_SET_AQ_MODE
Codec control function to set adaptive quantization mode, unsigned int parameter.
Definition: aomcx.h:466
@ AV1E_SET_SVC_LAYER_ID
Codec control function to set the layer id, aom_svc_layer_id_t* parameter.
Definition: aomcx.h:1270
@ AV1E_SET_SVC_REF_FRAME_CONFIG
Codec control function to set reference frame config: the ref_idx and the refresh flags for each buff...
Definition: aomcx.h:1281
@ AV1E_SET_CDF_UPDATE_MODE
Codec control function to set CDF update mode, unsigned int parameter.
Definition: aomcx.h:504
@ AV1E_SET_MV_COST_UPD_FREQ
Control to set frequency of the cost updates for motion vectors, unsigned int parameter.
Definition: aomcx.h:1248
@ AV1E_SET_SVC_REF_FRAME_COMP_PRED
Codec control function to set reference frame compound prediction. aom_svc_ref_frame_comp_pred_t* par...
Definition: aomcx.h:1383
@ AV1E_SET_ENABLE_WARPED_MOTION
Codec control function to turn on / off warped motion usage at sequence level, int parameter.
Definition: aomcx.h:1032
@ AV1E_SET_COEFF_COST_UPD_FREQ
Control to set frequency of the cost updates for coefficients, unsigned int parameter.
Definition: aomcx.h:1228
@ AV1E_SET_ENABLE_CDEF
Codec control function to encode with CDEF, unsigned int parameter.
Definition: aomcx.h:664
@ AV1E_SET_DV_COST_UPD_FREQ
Control to set frequency of the cost updates for intrabc motion vectors, unsigned int parameter.
Definition: aomcx.h:1352
@ AV1E_SET_SVC_PARAMS
Codec control function to set SVC paramaeters, aom_svc_params_t* parameter.
Definition: aomcx.h:1275
@ AOME_SET_MAX_INTRA_BITRATE_PCT
Codec control function to set max data rate for intra frames, unsigned int parameter.
Definition: aomcx.h:304
@ AV1E_SET_ERROR_RESILIENT_MODE
Codec control function to enable error_resilient_mode, int parameter.
Definition: aomcx.h:440
@ AV1E_SET_ENABLE_OBMC
Codec control function to predict with OBMC mode, unsigned int parameter.
Definition: aomcx.h:691
@ AV1E_SET_LOOPFILTER_CONTROL
Codec control to control loop filter.
Definition: aomcx.h:1398
@ AOME_SET_SCALEMODE
Codec control function to set encoder scaling mode, aom_scaling_mode_t* parameter.
Definition: aomcx.h:196
@ AV1E_SET_TILE_COLUMNS
Codec control function to set number of tile columns. unsigned int parameter.
Definition: aomcx.h:378
@ AV1E_SET_ENABLE_ORDER_HINT
Codec control function to turn on / off frame order hint (int parameter). Affects: joint compound mod...
Definition: aomcx.h:859
@ AV1E_SET_DELTAQ_MODE
Codec control function to set the delta q mode, unsigned int parameter.
Definition: aomcx.h:1125
@ AV1E_SET_ENABLE_GLOBAL_MOTION
Codec control function to turn on / off global motion usage for a sequence, int parameter.
Definition: aomcx.h:1022
@ AOME_SET_CPUUSED
Codec control function to set encoder internal speed settings, int parameter.
Definition: aomcx.h:218
@ AV1E_SET_GF_CBR_BOOST_PCT
Boost percentage for Golden Frame in CBR mode, unsigned int parameter.
Definition: aomcx.h:337
@ AV1E_SET_MODE_COST_UPD_FREQ
Control to set frequency of the cost updates for mode, unsigned int parameter.
Definition: aomcx.h:1238
@ AV1_GET_NEW_FRAME_IMAGE
Codec control function to get a pointer to the new frame.
Definition: aom.h:70
const char * aom_codec_iface_name(aom_codec_iface_t *iface)
Return the name for a given interface.
aom_codec_err_t aom_codec_control(aom_codec_ctx_t *ctx, int ctrl_id,...)
Algorithm Control.
const struct aom_codec_iface aom_codec_iface_t
Codec interface structure.
Definition: aom_codec.h:254
aom_codec_err_t aom_codec_destroy(aom_codec_ctx_t *ctx)
Destroy a codec instance.
const char * aom_codec_err_to_string(aom_codec_err_t err)
Convert error number to printable string.
aom_codec_err_t
Algorithm return codes.
Definition: aom_codec.h:155
#define AOM_CODEC_CONTROL_TYPECHECKED(ctx, id, data)
aom_codec_control wrapper macro (adds type-checking, less flexible)
Definition: aom_codec.h:521
const void * aom_codec_iter_t
Iterator.
Definition: aom_codec.h:288
#define AOM_FRAME_IS_KEY
Definition: aom_codec.h:271
@ AOM_BITS_12
Definition: aom_codec.h:321
@ AOM_BITS_8
Definition: aom_codec.h:319
@ AOM_BITS_10
Definition: aom_codec.h:320
@ AOM_CODEC_INVALID_PARAM
An application-supplied parameter is not valid.
Definition: aom_codec.h:200
@ AOM_CODEC_MEM_ERROR
Memory operation failed.
Definition: aom_codec.h:163
@ AOM_CODEC_OK
Operation completed without error.
Definition: aom_codec.h:157
aom_codec_err_t aom_codec_decode(aom_codec_ctx_t *ctx, const uint8_t *data, size_t data_sz, void *user_priv)
Decode data.
#define aom_codec_dec_init(ctx, iface, cfg, flags)
Convenience macro for aom_codec_dec_init_ver()
Definition: aom_decoder.h:129
const aom_codec_cx_pkt_t * aom_codec_get_cx_data(aom_codec_ctx_t *ctx, aom_codec_iter_t *iter)
Encoded data iterator.
aom_codec_err_t aom_codec_encode(aom_codec_ctx_t *ctx, const aom_image_t *img, aom_codec_pts_t pts, unsigned long duration, aom_enc_frame_flags_t flags)
Encode a frame.
#define aom_codec_enc_init(ctx, iface, cfg, flags)
Convenience macro for aom_codec_enc_init_ver()
Definition: aom_encoder.h:950
aom_codec_err_t aom_codec_enc_config_default(aom_codec_iface_t *iface, aom_codec_enc_cfg_t *cfg, unsigned int usage)
Get the default configuration for a usage.
#define AOM_USAGE_REALTIME
usage parameter analogous to AV1 REALTIME mode.
Definition: aom_encoder.h:1023
@ AOM_CBR
Definition: aom_encoder.h:186
@ AOM_KF_AUTO
Definition: aom_encoder.h:201
@ AOM_CODEC_CX_FRAME_PKT
Definition: aom_encoder.h:109
Codec context structure.
Definition: aom_codec.h:298
aom_codec_err_t err
Definition: aom_codec.h:301
Encoder output packet.
Definition: aom_encoder.h:121
size_t sz
Definition: aom_encoder.h:126
enum aom_codec_cx_pkt_kind kind
Definition: aom_encoder.h:122
union aom_codec_cx_pkt::@1 data
struct aom_codec_cx_pkt::@1::@2 frame
aom_codec_frame_flags_t flags
Definition: aom_encoder.h:131
void * buf
Definition: aom_encoder.h:125
Encoder configuration structure.
Definition: aom_encoder.h:386
unsigned int g_input_bit_depth
Bit-depth of the input frames.
Definition: aom_encoder.h:469
unsigned int rc_dropframe_thresh
Temporal resampling configuration, if supported by the codec.
Definition: aom_encoder.h:534
struct aom_rational g_timebase
Stream timebase units.
Definition: aom_encoder.h:483
unsigned int g_usage
Algorithm specific "usage" value.
Definition: aom_encoder.h:398
unsigned int rc_buf_sz
Decoder Buffer Size.
Definition: aom_encoder.h:698
unsigned int g_h
Height of the frame.
Definition: aom_encoder.h:434
enum aom_kf_mode kf_mode
Keyframe placement mode.
Definition: aom_encoder.h:761
enum aom_rc_mode rc_end_usage
Rate control algorithm to use.
Definition: aom_encoder.h:617
unsigned int g_threads
Maximum number of threads to use.
Definition: aom_encoder.h:406
unsigned int kf_min_dist
Keyframe minimum interval.
Definition: aom_encoder.h:770
unsigned int g_lag_in_frames
Allow lagged encoding.
Definition: aom_encoder.h:512
unsigned int rc_buf_initial_sz
Decoder Buffer Initial Size.
Definition: aom_encoder.h:707
unsigned int g_profile
Bitstream profile to use.
Definition: aom_encoder.h:416
aom_bit_depth_t g_bit_depth
Bit-depth of the codec.
Definition: aom_encoder.h:461
unsigned int g_w
Width of the frame.
Definition: aom_encoder.h:425
unsigned int rc_undershoot_pct
Rate control adaptation undershoot control.
Definition: aom_encoder.h:674
unsigned int kf_max_dist
Keyframe maximum interval.
Definition: aom_encoder.h:779
aom_codec_er_flags_t g_error_resilient
Enable error resilient modes.
Definition: aom_encoder.h:491
unsigned int rc_max_quantizer
Maximum (Worst Quality) Quantizer.
Definition: aom_encoder.h:661
unsigned int rc_buf_optimal_sz
Decoder Buffer Optimal Size.
Definition: aom_encoder.h:716
unsigned int rc_min_quantizer
Minimum (Best Quality) Quantizer.
Definition: aom_encoder.h:651
unsigned int rc_target_bitrate
Target data rate.
Definition: aom_encoder.h:637
unsigned int rc_resize_mode
Mode for spatial resampling, if supported by the codec.
Definition: aom_encoder.h:543
unsigned int rc_overshoot_pct
Rate control adaptation overshoot control.
Definition: aom_encoder.h:683
Image Descriptor.
Definition: aom_image.h:171
aom_img_fmt_t fmt
Definition: aom_image.h:172
unsigned int d_w
Definition: aom_image.h:186
unsigned int d_h
Definition: aom_image.h:187
int num
Definition: aom_encoder.h:164
int den
Definition: aom_encoder.h:165
aom image scaling mode
Definition: aomcx.h:1468
Definition: aomcx.h:1509
int temporal_layer_id
Definition: aomcx.h:1511
int spatial_layer_id
Definition: aomcx.h:1510
Definition: aomcx.h:1515
int max_quantizers[32]
Definition: aomcx.h:1518
int number_spatial_layers
Definition: aomcx.h:1516
int layer_target_bitrate[32]
Definition: aomcx.h:1523
int framerate_factor[8]
Definition: aomcx.h:1525
int min_quantizers[32]
Definition: aomcx.h:1519
int scaling_factor_den[4]
Definition: aomcx.h:1521
int number_temporal_layers
Definition: aomcx.h:1517
int scaling_factor_num[4]
Definition: aomcx.h:1520
Definition: aomcx.h:1539
int use_comp_pred[3]
Definition: aomcx.h:1542
Definition: aomcx.h:1529
int reference[7]
Definition: aomcx.h:1532
int refresh[8]
Definition: aomcx.h:1535
int ref_idx[7]
Definition: aomcx.h:1534